Новости
267 0

Схема включения лампы ДРЛ в сеть приведена на рисунке

Лампы ДРЛ

Аббревиатура ДРЛ расшифровывается как дуговая ртутная люминофорная лампа. Такие лампы имеют в конструкции горелку из тугоплавкого материала, в которую заведены четыре электрода. Во время подачи электрического тока между электродами возникает электрическая дуга, которая выступает светящим элементом в лампах ДРЛ. Ультрафиолетовое излучение дуги преобразуется в видимый спектр излучения с помощью люминофора, нанесенного на внешнюю колбу лампы. Именно люминофор дает красноватое свечение, которое мы привыкли видеть у ртутных ламп.

Для ламп ДРЛ характерна большая мощность (распространены лампы мощностью 250 Вт) и высокий световой поток. Чаще всего они используются при освещении улиц и промышленных объектов, где не требуется высокое качество цветопередачи.

Помимо низкого индекса цветопередачи к существенным недостаткам относят частое мерцание и так называемое старение ртутных ламп. Так, через три месяца светильники теряют порядка 30 % светового потока, через год эксплуатации — уже 40 %. По статистике, лампы ДРЛ служат на 30 % меньше заявленного срока — например, из теоретических десяти тысяч часов работы на практике лампы светят только семь.

Ртутные лампы способны работать при отрицательных температурах, но только до −20 °С — при более низкой температуре зажигание лампы затрудняется. И это тоже один из недостатков технологии ДРЛ.

И, пожалуй, самый большой минус таких ламп — неэкологичность, поскольку лампы содержат ртуть. Чтобы избежать вреда для человека и окружающей среды, утилизировать отслужившие лампы необходимо особым образом. К сожалению, закон предусматривает обязательства по утилизации только для организаций. Частные потребители выбрасывают лампы в обычные мусорные баки.

Читайте также: Кабель КГ: технические характеристики, область применения и способы монтажа

Классификация ламповых аппаратов

Первичная классификация ртутных изделий происходит в зависимости от давления внутреннего наполнения.

Расшифровка буквенной аббревиатуры:

  • РЛНД– лампы низкого давления;
  • РЛВД– модули высокого давления;
  • РЛСВД– устройства сверхвысокого давления.

В первой группе находятся изделия, имеющие в установившемся режиме базовое парциальное давление ртутных паров меньше, чем 0,01 МПа. Во второй эта величина составляет от 0,1 МПа до 1 МПа, а в третьей – превышает 1 МПа.

№1 — особенности изделий низкого давления

В перечень ртутных изделий низкого давления входятлинейные и компактные люминесцентные лампы, доступные для организации бытовых осветительных систем в жилых, офисных и рабочих помещениях.

По форме они могут быть кольцевыми, линейными, U-образными и стандартными.

Освещение ртутными лампами низкого давленияПриборы низкого давления лучше всего проявляют себя при температуре окружающего воздуха в 18-25 °C. Отклонения от этих цифр плохо сказываются на работе, снижая насыщенность, яркость и силу светопотока

Спектральная цветопередача превышает показатели традиционных ламп накаливания. В температуре свечения преобладают натуральные оттенки.

Ртутные лампы низкого давленияИзделия низкого давления вырабатывают равномерный, мягкий, не раздражающий глаз свет, достигающий по насыщенности 75 Лм/Вт. Их срок службы может составлять до 10 000 часов

В упрек устройствам ставят зависимость от температурных показателей окружающей среды, невозможность питания постоянным током и эффект периодической пульсации.

Подробнее об устройстве, преимуществах и недостатках люминесцентных ламп читайте в этой статье.

№2 — отличия ламп высокого давления

Основным представителем класса газоразрядных приборов высокого давления являютсяртутьсодержащие дуговые лампочки(ДРЛ) общего и узкоспециализированного назначения.

Первые монтируются в модули для организации наружных осветительных систем, а вторые применяются в некоторых промышленных отраслях, медицине и сельском хозяйстве.

Классические ДРЛ-лампы ртутного типаВ классических ДРЛ-лампочках для исправления цветопередачи излучаемого потока используется люминофорное покрытие. Оно наносится на внутреннюю поверхность колбы, обеспечивая более насыщенный, качественный свет

Мощность приборов находится в диапазоне от 50 до 1000 Вт. Лампы подходят для общего освещения магистралей, улиц, придомовых территорий, крытых и открытых площадок, цехов, складов и прочих объектов, где не предусмотрено постоянное пребывание людей.

В этот же класс входят более прогрессивныертутно-вольфрамовые лампы. Имеют аналогичные показатели, но от простых ртутных отличаются тем, что ртутно-вольфрамовые лампы могут корректно подключаться к сети без пускорегулирующего аппарата.

Читайте также: Потолочные светодиодные светильники Армстронг: монтаж и ремонт своими руками

Эту возможность обеспечивает вольфрамовая нить. Она играет одновременно две роли: являясь накальным источником света, параллельно служит еще и ограничителем электрического тока.

Дуговые металлогалогеные лампы(ДРИ) тоже принадлежат к разряду ртутных ламп. Их главное отличие заключается в специальных излучающих добавках, которые значительно повышают эффективность свечения.

Для подключения металлогалогенных ламп к электрической сети в цепь необходимо встраивать дроссельный элемент.

Металлогалогенные лампы ртутного типаКолба металлогалогенов бывает эллипсоидной или цилиндрической. Внутри находится не стандартная кварцевая горелка, а более эффективная и надежная керамическая

Лампы этого типа актуальны для подсветки зданий, исторических объектов и архитектурных сооружений, спортивных арен, футбольных полей, торговых, рекламных и выставочных залов как крытых, так и располагающихся на открытом воздухе.

Металлогалогенные ртутные модули с зеркальным слоем(ДРИЗ) по функционалу схожи с ДРИ-приборами. Однако, за счет плотного слоя зеркального покрытия способны давать насыщенный луч света, который можно направить в определенную область.

Ртутные лампы ДРИЗИзделия ДРИЗ максимально эффективны в условиях слабой и плохой видимости. С их помощью легко и удобно освещать конкретные объекты, к которым требуется привлечь внимание

Ртутно-кварцевые трубчатые лампы(ДРТ) имеют колбу в форме удлиненного цилиндра, где на торцах располагаются рабочие электроды. Применяются для УФ-сушки, светокопировальных работ и прочих узкотехнологических целей.

№3 — нюансы модулей сверхвысокого давления

Шаровые устройства ртутно-кварцевого типа(ДРШ) принадлежат к классу ламп сверхвысокого давления. Специфическая округлая форма колбы позволяет выдавать интенсивное излучение при относительно небольшой базовой мощности и компактном размере.

Блок питания для ДРШ-лампДля работы ДРШ-устройства требуется блок питания. Он помогает активировать лампу и осуществляет начальный розжиг горелки

Область применения таких агрегатов гораздо уже. Обычно их эксплуатируют в проекционных системах и разноплановом лабораторном оборудовании, например, в мощных микроскопах.

Спектральный анализ в домашних условиях

Проще всего осуществить подбор лампы с нужным диапазоном спектра в специализированных магазинах, но, например, для энергосберегающих ламп или лед ламп для аквариума такой параметр никто не рассчитывает. Опираясь на визуальные ощущения, это сделать невозможно. Человеческий глаз не способен распознавать ультра-фиолетовое или инфра-красное излучение, подобная лампа будет казаться нам просто не слишком ярко белой. Для растений же этот критерий крайне важен, следовательно, неправильно сделанный выбор повлечет за собой гибель всего водного сообщества.

В этом случае можно попытаться провести расчет превалирующих в спектре волн с помощью обычного DVD диска. Разместите диск под углом к включенной лампе, и вы увидите, что свет разложился на спектр, то есть, обычную радугу. Единственным отличием такой «радуги» от обычной будет неравномерное расположение цветовых «дуг». Например, для лампы, спектр которой сдвинут в сторону красно-желтого спектра, превалирующим будет наличие и количество именно этих цветов.

Виды фито ламп

С сутью ламп и светильников для растений разобрались: излучают расширенный спектр света, подобный солнечному. Теперь немного о разновидностях фито-освещения.

Лампы красно-синего спектра

Почти вся сила излучения ламп красно-синего спектра приходится на крайние точки видимого диапазона света: красный, граничащий с инфракрасным, и синий, близкий к ультрафиолетовому. В таких лампах два типа светодиодов: красные и синие, а общий свет за счет смешения получается фиолетовый.

Читайте также: Как провести свет на дачу — тонкости и нюансы подключения электричества

Синий спектр способствует делению клеток растения, но препятствует их растяжению. Рассада не вытягивается, происходит увеличение зеленой массы. Кстати, синим спектром можно выпрямить растение, размещая источник света с противоположной от наклона стороны.

Красный спектр стимулирует синтез хлорофилла и рост растения: развитие корневой системы, прорастание семян, созревание плодов, цветение растений.

Особенности двухцветных фито-ламп:

  • дополняют обычные бытовые осветительные приборы;
  • более дешевые.

Несмотря на некоторую «неполноценность» в плане охвата спектра светового потока, красно-синие фито-лампы эффективны для рассады и зелени, поскольку стимулируют основные процессы роста. Также их применяют для «досветки» в дополнение к обычному освещению.

РассадаЗеленьДосветка

Лампы полного спектра

Тот случай, когда суть понятна из названия) Излучение таких ламп осуществляется во всем спектре света

Важность красных и синих цветов в жизни растений мы рассмотрели выше. Но, например, зеленый цвет хотя не так активно поглощается флорой, но имеет глубокое проникновение, что необходимо листьям нижних ярусов и плотной растительности

Каждый цвет отвечает за свою «сферу деятельности» в растении, поэтому только фито светильники полного спектра создают условия для их полноценного развития.

Фотосинтетический поток близок к естественному, с акцентами в наиболее важных для развития растений сегментах. Поэтому свет светильника полного спектра не так сильно отличается от бытового: белый слегка кремовый или светло розовый.

Особенности:

  • позволяют практически полностью заменить естественное освещение;
  • более дорогие.

С помощью фито-ламп полного спектра можно «продлить» световой день для растений или вообще заменить солнечный свет, ускорить формирование цветов и плодов в условиях недостаточной освещенности, обеспечить полноценное развитие южных культур.

Плодоносящие культурыДекоративные растенияСветолюбивые растения

Ртутно-вольфрамовые лампы

Рисунок 3. Схема ртутно-вольфрамовой лампы: 1 – вольфрамовая спираль; 2 – ртутно-кварцевая горелка

Затрудненное зажигание ламп типа ДРЛ при отрицательных температурах, использование индуктивных балластов, а также необходимость исправления цветности излучения привели к созданию ламп высокого давления с балластом в виде нити лампы накаливания. Отметим, что большие потери мощности в активном балласте, которым является нить накаливания, по сравнению с потерями в индуктивном балласте компенсируются простотой активного балласта при возможности одновременного получения с его помощью недостающего красного излучения.

Поместив во внешнюю колбу, в которой размещена кварцевая горелка для уменьшения зависимости ее параметров от внешней температуры, балластную нить накала, удалось получить лампу, пригодную для непосредственного включения в сеть. Конструкция такой лампы показана на рисунке 3. Размещение нити накала внутри колбы лампы создает дополнительное преимущество, заключающееся в сокращении периода разгорания за счет нагрева горелки излучением спирали.

Основным при расчете ламп смешанного света, как называют иногда ртутно-вольфрамовые лампы, является выбор параметров нити накала. Мощность нити выбирают исходя из условия стабилизации ртутного разряда. световую отдачу нити приходится снижать ради получения достаточно красного отношения, одновременно обеспечивается срок службы нити, соизмеримый со сроком службы кварцевых горелок. В пусковой период напряжение сети целиком падает на спираль, однако по мере разгорания ртутной лампы напряжение на ней повышается, а напряжение на балластной спирали снижается до рабочего значения. Световая отдача ртутно-вольфрамовых ламп составляет 18 – 20 лм/Вт, так как около 50 % мощности расходуется на нагрев спирали. Поэтому эти лампы по экономичности не могут конкурировать с лампами типа ДРЛ и другими лампами высокого давления. Их применение ограничено специальными областями, например, облучательной техникой.

Лампы типа ДРВЭ имеют внешнюю колбу, выполненную из специального стекла, пропускающего ультрафиолетовое излучение. Такие лампы применяют для совместного освещения и облучения, например в теплицах. Срок службы таких ламп составляет 3 – 5 тысяч часов, он определяется сроком службы вольфрамовой нити накала.

Виды инфракрасных лампы.

Инфракрасные лампы накаливания с отражателем применяются в животноводстве и других сельскохозяйственных отраслях, используются для разогревания пищи в общепите, в оздоровительных и медицинских целях, для сушки, нагревания, вулканизации, дистилляции, смягчения, пастеризации, полимеризации, испарения и т. п.

Рубиново-красные галогенные лампы – используются для отопления больших помещений, так же наружного отопления в местах общего пользования.

Прозрачные кварцевые галогенные лампы — предназначены для высушивания краски, разогревания пластика при изготовлении ПЭТ-бутылок, высушивания лаков и типографских красок, запекания и отвердение порошковых покрытий, термической стерилизации.

Галогенные лампы с золотистым покрытием — заменяют лампы с рубиновым кварцем. Используются там где требуется уменьшить яркость, создают комфортные зоны на холодном наружном пространстве, эффективно нагревают пространство в больших зданиях, например холлах, складах, гаражах, стадионах, выставочных залах и т. д.

Читайте также: Основные формулы термодинамики и молекулярной физики, которые вам пригодятся

Расплетая радугу: спектр света и инфракрасное излучение

Свет обладает невероятными свойствами, которые не похожи на на что другое, знакомое человеку. Элементарная частица света — фотон, излучаемая атомом или молекулой, “рождается” — если это слово уместно употребить — со скоростью света. Никакая другая частица не способна в одно мгновение разогнаться до скорости света. Реальность такова, что ничто не может двигаться быстрее. Но что такое свет?

Каждый Охотник Желает Знать Где Сидит Фазан

Как и Ибн аль-Хайсам, Исаак Ньютон хотел знать ответ на этот вопрос с самого детства. К 20 годам он стал первым человеком, который разгадал тайну радуги: Ньютон увидел, что солнечный белый свет — ни что иное как смесь всех цветов радуги. Разложенное изображение света по всем цветам Ньютон назвал спектром. Это поразительное открытие молодого ученого, однако, было неполным, ведь свет, как мы знаем сегодня, является ключом к тайнам космоса и далеких миров. В следующий раз о самых необычных свойствах света мир узнает лишь спустя 150 лет. Это выпадет на долю другого ученого, который совершит свое открытие, как это часто бывает, совершенно случайно. Такова история науки — множество героев раскрывают тайны нашего существования столетие за столетием.

В 1800 году английский астроном Уильям Гершел, который первым понял что ночное небо полно “призраков”, изучал небо с помощью самых современных телескопов своего времени. Учитывая тайну радуги, которую разгадал Исаак Ньютон, Гершель задумался — могут ли какие-то цвета быть теплее или холоднее других? Чтобы проверить эту гипотезу, Гершель установил три термометра на белом листе бумаги. Контрольный термометр находился вне спектра — то есть не освещался солнечными лучами. Результаты эксперимента показали — красный цвет действительно теплее синего. Однако показатели контрольного термометра долго не давали ученому покоя: дело в том, что он обнаружил невидимое присутствие, которое сокрыто ниже красной части спектра. Впоследствии его стали называть инфракрасным, так как infra на латыни означает “ниже”. Человеческий глаз, в отличие от кожи, не способен уловить инфракрасное излучение. Но мы чувствуем его тепло.

Обзор лучших моделей на рынке

Так как лампочки, оснащенные токсичной ртутью, преимущественно используют в наружных осветительных системах, крытых промышленных и технических помещениях, а в быту применяют крайне редко, их внешний вид не отличается оригинальностью.

Место #1 — лампочки торговой марки Osram

Даже солидные бренды придерживаются классики и не считают нужным придавать приборам необычную форму и сложную конфигурацию.

Ртутная лампа в гаражеПриборы ртутного типа можно установить в гараже. Они обеспечат стабильный и яркий поток света, способствующий концентрации внимания

Ртутные модулиHQL Standart, изготовленные на предприятияхOsram, надежны и не боятся интенсивных эксплуатационных нагрузок. Диапазон мощности очень широк и начинается с 50 Вт, а заканчивается 1000 Вт.

Для корректного подключения ламп и последующей нормальной работы требуется установка пускорегулирующего аппарата.

Ртутные лампы Osram в осветительной системеПриборы ртутного типа от германского бренда Osram подходят для освещения крупногабаритных складских и производственных помещений, в которых максимальные требования предъявляются к яркости излучения, а к уровню цветопередачи столь жестких претензий нет

Изделия выпускаются с каплевидной матовой колбой, оснащаются люминофорным покрытием и цоколем E27/E40. Внутренняя горелка изготовляется из прочного кварца.

Приборы меньшей мощности, до 125 Вт, передают нейтрально-белое свечение, а модули от 250 Вт и выше вырабатывают чуть более естественный дневной свет.

Лампочки Osram, сделанные на ртутно-вольфрамовой основе, по всем характеристикам превосходят привычные газоразрядные. Срок их службы гораздо длиннее, а область применения обширнее. Второй параметр обусловлен улучшенным спектром цветового свечения модулей.

При мощности в 160 Вт изделия вырабатывают свет в 3600 К, приближенный к теплой гамме. Более белый оттенок в 3800 К дают лампы в 250 Вт. И только 500-ваттные обеспечивают нейтральное белое свечение в 4000 К.

Такие модули подходят для создания привлекательного, яркого и эффектного освещения в парковых зонах, на открытых пространствах и центральных городских аллеях, прогулочных зонах, концертных залах и прочих местах массового, но не постоянного пребывания людей.

Место #2 — ассортимент компании Philips

Содержащие ртуть лампы отPhilipsвключены в сериюHPL-N. Они представляют собой простые газоразрядные модули высокого давления, оснащенные 1 или 2 вспомогательными электродами.

По большей части применяются для обустройства наружного освещения открытых площадок, придомовых территорий и прочих мест подобного плана.

Ртутные лампы PhilipsВнутри колбовой части лампочек Филипс располагается кварцевая горелка высокого давления, наполненная парами ртути и смесью аргона. Выдаваемый светопоток в зависимости от мощности составляет 1800 Лм у 50W прибора и до 58 500 ЛМ у модуля в 1000 ВТ

Особенность изделий состоит в том, что они не теряют время на розжиг, а сразу же с момента активации обеспечивают равномерное, яркое и качественное освещение пространства.

Каплевидная матовая колба изготовляется в двух вариантах:

  • SG– легкоплавкое стекло с люминофорным покрытием, нанесенным в три слоя;
  • HG– тугоплавкое стекло, иногда содержащее некоторое количество кварца — демонстрирует увеличенную стойкостью к рекордно высоким температурам.

SG-элементы используют для ламп низкой и средней мощности, а HG применяют в модулях от 500 Вт до 1000Вт.

Оттеночная гамма источников света составляет 3900-4200 К. Эти цифры обозначают нейтральный оттенок свечения, приближенный к естественному. Фирменная гарантия дается на 1 год.

Всерию MLвходят инновационные ртутно-вольфрамовые лампы с люминофорным внутриколбовым покрытием. Их отличительная черта – однородный, насыщенный и яркий поток света с высокоуровневой цветопередачей.

Выпускаются с цоколями E27/E40 и имеют базовую мощность в 100, 160, 250 и 500 Вт.

Уличная система освещения ртутными лампамиПри помощи ртутно-вольфрамовых модулей ML можно создать на придомовой территории приятное глазу, эстетичное, экономичное и долговечное освещение

Температура светопотока колеблется в пределах 3400-3700 К. Лампы такого типа можно назвать одними из самых теплых в своем классе. Их удобно использовать не только для уличного освещения, но и для больших магазинов, концертных залов и торговых центров.

Место #3 — предложения торговой марки Delux

Молодой и перспективный украинский брендDelux, зарегистрированный в 2005 году, вполне успешно конкурирует с зарубежными производителями. Основные предприятия торговой марки располагаются на промышленных площадках Китая.

Высокий уровень изготовления и безупречное качество сборки делают лампы Delux актуальными и востребованными.

Ртутная лампа DeluxМодуль ртутного типа Delux обеспечивает мощный светопоток с хорошим уровнем рассеивания. Фирменная гарантия дается на 12 месяцев при условии соблюдения базовых правил и условий эксплуатации, указанных в сопроводительных документах

Стандартные изделия представленылинейкой GGYи предназначены для эффективного наружного применения. Рабочая колба имеет слегка вытянутую каплевидную форму.

Металлическим цоколем E27 оснащаются модели мощностью в 125 Вт. Остальные изделия комплектуются цокольным элементом E40. Диапазон их мощности располагается в пределах 250-1000 Вт.

Более прогрессивная серия ртутно-вольфрамовых приборовGYZвключает в себя модули E27/E40 с рабочей мощностью в 160, 250 и 500W.

Изделия надежно и долго служат, в течение всего времени вырабатывая плотный и насыщенный поток света с оптимальным уровнем цветопередачи.

Так что же лучше

Чаще всего лучшим вариантом будет сочетание холодного и теплого света, а также возможность управления осветительными приборами по отдельности для создания определенного настроения во всем помещении или его части.

Таким образом, вы сами всегда сможете получить атмосферу тепла и комфорта, используя освещение теплого диапазона. Или, наоборот, использовать холодный свет для решения задач, требующих внимательности и концентрации.

Вечером можно включить лампы накаливания, разжечь камин, чтобы расслабиться и отдохнуть в атмосфере теплого света. А если вдруг захотелось почитать книгу, воспользуйтесь отдельным светильником, который дает более холодный свет.

Теплое освещение отлично впишется в небольшую квартиру, оформленную в винтажном стиле с преобладанием теплых тонов в интерьере, а холодный свет выгодно подчеркнет современные дизайнерские решения в просторном помещении с предметами ярких цветов и светлыми стенами.

https://youtube.com/watch?v=lrSHgq2AEug

Опасность светодиодного освещения

Проведенные учеными исследования, позволили выяснить, что опасность представляет именно излучение светодиодов. При этом:

Читайте также: Разъединители РЛНД: что это такое, расшифровка аббревиатуры, устройство и применение
  • вред наносят синие и фиолетовые коротковолновые составляющие спектра;
  • зелёный свет менее вреден;
  • красный не наносит никакого вреда человеческому организму.

Светодиодные лампы оказывают отрицательное влияние на сетчатку глаза. Полученные травмы могут быть:

  • фотомеханическими (возникают при воздействии ударной волны световой энергии);
  • фототермическими (появляются при нагревании ткани в процессе облучения);
  • фотохимическими (вызывают химические изменения под воздействием потока света).

Отсюда следует, что смотреть на яркие светодиодные лампы опасно. Но такой же вывод можно сделать применительно к лампам накаливания или люминесцентным светильникам.

Производители снабжают источники освещения рассеивателями, плафонами, дающими мягкий свет. Благодаря этому, удается значительно снизить вред светодиодных ламп, наносимый здоровью человека.

Как рассчитать оптимальные параметры фитолампы для 2 типов конструкций

Сразу разграничим задачи светильника. Он может использоваться для:

  1. досветки, когда рассада развивается на подоконнике, в теплице, зимнем саду и получает всю порцию дневного освещения, а с наступлением сумерек досвечивается полезным спектром биколорных ламп (два цвета — красный и синий);
  2. или постоянного освещения (режим светокультуры).

Во втором случае во время начала вегетации применяют биколорные лампы, а дальнейший рост ведут на источниках мультиспектра (full spectrum). Этот вариант предусматривает развитие растений в изолированных отсеках (гроубоксы и гроутенты) вдали от окна.

Его сейчас опустим и сосредоточим основное внимание на первой задаче. При ее решении нам вначале потребуется определить величину необходимой энергии для проведения фотосинтеза (ватты на м кв), а по ней подбирать фитолампы, которые оцениваются потреблением электрической мощности в ваттах, сопровождаемые повышенными потерями энергии

При ее решении нам вначале потребуется определить величину необходимой энергии для проведения фотосинтеза (ватты на м кв), а по ней подбирать фитолампы, которые оцениваются потреблением электрической мощности в ваттах, сопровождаемые повышенными потерями энергии.

В тепличных хозяйствах с большими площадями посадок для досветки растений массово применяют дуговые натриевые лампы трубчатых конструкций ДНаТ, ДНаЗ (с зеркальным отражателем) и ДриЗ (ртутная металлогалогенная, зеркальная), а также люминесцентные источники.

На основе опыта их применения выработаны нормативы минимального уровня освещения для растения: 6-7 килолюкс (клк). Во время зимнего периода и ранней весной их увеличивают.

При этом надо добиться удельной мощности освещения из расчета 50-100 ватт на метр квадратный. Ее обеспечивают изменением расстояния от светильника до рассады.

Для источников мощностью 1000 ватт свет относят на 80-100 сантиметров, 600 — 60÷80, а 400 — 40÷60 см. Гарантированный урожай выращивается при 10÷12 клк, но не более 20.

Онлайн калькулятор освещения растений

Этот доступный способ призван облегчить расчет параметров осветительных приборов. Используйте его.

Онлайн калькулятор (ссылка откроется в новом окне)

О пользе рефлектора

Применение экрана позволяет целенаправленно распределять световой поток с максимальной пользой для растений. Лучшими отражателями работают зеркала и алюминиевая фольга.

Даже простое расположение стаканчиков с рассадой на фольге позволяет улучшить ее освещение снизу за счет эффекта отражения в любое время.

Как рассчитывается количество ламп: простой способ

Нам известна площадь, которую будет занимать рассада и зона освещения от одной лампы.

По этим данным потребуется так разместить круги от всех светильников, чтобы они полностью перекрыли растения без наличия зазоров, обеспечив всю их площадь постоянным освещением.

Этот графический метод позволяет избавиться от сложных математических формул.

7 этапов расчета осветительной системы

Краткий алгоритм создания проекта освещения следующий:

  1. Определить требуемый уровень освещенности в ваттах ФАР на 1 м кв площади.
  2. Выяснить габариты участка, потребного в освещении.
  3. Рассчитать величины освещенности площади, занимаемой растениями.
  4. Определить количество ватт ФАР, которое должен обеспечивать источник.
  5. Подсчитать величину мощности ламп для осуществления оптимальной фотосинтетически активной радиации.
  6. Определить потребное количество ламп.
  7. Составить схемы размещения светильников.

Схема включения лампы ДРЛ в сеть приведена на рисунке

9.8,б.При включении лампыELв сеть между близко расположенными основными и вспомогательными электродами возникает разряд, который ионизирует газ в горелке и обеспечивает зажигание разряда между основными электродами. После зажигания лампы разряд между основными и вспомогательными электродами прекращается. Балластное устройство в виде дросселяLLограничивает ток лампы и стабилизирует его при отклонениях напряжения сети в допустимых пределах. РезисторыR1и ^ограничивают силу тока при зажигании лампы.В момент зажигания ток лампы в 2…2,6 раза превышает номинальный, но по мере разогрева горелки он постоянно уменьшается, напряжение на лампе возрастает от 65 до 130 В, мощность лампы и ее поток излучения возрастают. Разгорание лампы длится

5… 10 мин. В рабочем режиме температура внешней колбы превышает 200 °С. Повторное зажигание лампы ДРЛ осуществляют через 10…15 мин после ее погасания и остывания.

Излучение лампы, кроме отдельных спектральных линий, характерных для газового разряда в парах ртути при высоком давлении, содержит красную составляющую в виде сплошного спектра в диапазоне 580…720 нм, обусловленную свечением люминофора при облучении его ультрафиолетовым излучением кварцевой горелки лампы. Излучение люминофора составляет 8… 10 % общего потока лампы и в некоторой степени улучшает спектральный состав излучения.

Лампы ДРЛ выпускают мощностью от 80 до 2000 Вт. Средний срок службы ламп более 10000 ч. Световая отдача 40…55 лм/Вт, что более чем в 2 раза выше световой отдачи ламп накаливания такой же мощности и ниже, чем у люминесцентных ламп. Значительные единичные мощности лампы ДРЛ при сравнительно небольших размерах позволяют получать от одного источника во много раз больший поток излучения, чем от люминесцентных ламп. К концу срока службы значение светового потока ламп ДРЛ уменьшается до 70%от начального.Условия окружающей среды не оказывают существенного влияния на надежность зажигания и светотехнические характеристики лампы. Это объясняется тем, что горелка лампы находится в газонаполненном пространстве и все время имеет высокую температуру. Лампы ДРЛ успешно работают при температурах окружающего воздуха от —40 до +80 °С, что выгодно отличает их от других люминесцентных ламп.

Лампы ДРВЛ (дуговые ртутно-вольфрамовые люминесцентные)— разновидность ламп ДРЛ. Внешне они не отличаются от ламп ДРЛ, но внутри колбы встроено балластное устройство в виде вольфрамовой спирали, включенной последовательно с газоразрядным промежутком. Вольфрамовая спираль, ограничивая ток дугового разряда, дополняет излучение люминофора излучением красной части спектра. Лампы ДРВЛ включают в сеть непосредственно. Они имеют более благоприятный для правильной цветопередачи состав излучения, не требуют для работы металлоемкого и дорогостоящего балластного устройства, но обладают в 1,8…2 раза более низкой световой отдачей.Фитолампы— другая разновидность ламп ДРЛ. Конструктивно они сходны с лампами ДРЛ соответствующей мощности. Их отличие состоит в том, что люминофор, нанесенный на внутреннюю поверхность колбы лампы, и под слоем люминофора отражающее покрытие из напыленного алюминия обеспечивают требуемое распределение потока излучения ламп в пространстве. Эти лампы широко используют с облучателями ОТ 400 в тепличном овощеводстве.Растениеводческие лампы ДРВ750имеют встроенный балласт в виде вольфрамовой спирали, размещенной внутри колбы. Использование ламп со встроенным балластом позволяет сократить капитальные затраты на облучательную установку в5…6 раз. Эффективность таких ламп ниже в 1,5…2 раза по сравнению с лампами, работающими совместно со стандартным индуктивным балластом.

Рис.9.9. Устройство лампы ДРФ1000

Устройство фитолампы ДРФ1000 показано на рисунке 9.9. Колба3выполнена из термостойкого стекла, устойчивого против растрескивания при попадании на него капель воды. На внутреннюю поверхность колбы нанесен диффузно направленный отражающий слой из алюминия и его окислов. Кварцевая горелка1заполнена аргоном и парами ртути с добавками йодидов лития и индия. Основные электроды2, 5выполнены из вольфрама, активированного окислами тория. Зажигающий электрод включен через ограничительный резистор4с сопротивлением 10… 15 кОм. Работает лампа так же, как лампа ДРЛ.Введение в полость горелки йодидов металлов позволило получить фитопоток, равный 90 фт, при фитоотдаче 90 мфт/Вт. Лампа ДРФ включается в сеть при помощи балластного устройства ДБ1000-2/220.

Дуговые металлогалогенные лампы высокого давления (ДРИ)устроены следующим образом (рис. 9.10,а).Лампа имеет стеклянную термостойкую колбу3,внутри которой создан вакуум, обеспечивающий необходимый температурный режим и препятствующий электрическому пробою между токоведущими частями лампы. Внутри колбы расположена кварцевая горелка1с электродами2.Полость горелки заполнена аргоном и строго дозированными компонентами ртути, йодидов редкоземельных металлов (гольмия, тулия, таллия), а также натрия и цезия.Схема включения лампы ДРИ показана на рисунке 9.10,б.Она содержит трансформаторТ2,вторичная обмотка которого выполняет роль балластного сопротивления, стабилизирующего разряд между электродами. Первичная обмотка трансформатораТ2 —часть зажигающего устройства, содержащего, кроме того, трансформатор 77, конденсатор С и разрядникFV.Напряжение сети, приложенное к электродам лампыEL,недостаточно для возникновения разряда между ними. При включении кнопкойSBтрансформатораТ1конденсатор С за часть полупери- ода тока сети заряжается от вторичнойIIобмоткиТ1до напряжения пробоя разрядника. В момент пробоя по первичной /обмоткеТ2протекает импульс тока разряда конденсатора, а во вторичнойII

обмоткеТ2возникает импульс напряжения с амплитудой от 2 до 3 кВ, обеспечивающий зажигание разряда в горелке лампы. В следующий полупериод тока процесс повторяется.

Лампа разогревается через 2…4 мин после включения. Повторное зажигание лампы ДРИ возможно после ее погасания через

5…10 мин.

Каждый из компонентов наполнения горелки лампы дополняет линейчатый спектр ртутного разряда своим излучением. Иодид натрия дополняет излучение в желтой части, таллия — в зеленой, индия — в голубой. Совокупность излучений всех компонентов создает впечатление непрерывного спектра, а определенный состав смеси позволяет получить цветность излучения лампы, близкую к естественному свету.

Рис. 9.10. Лампа ДРИ: а

— устройство;б —схема включения

Световой поток ламп ДРИ по сравнению с лампами ДРЛ такой же мощности больше в 1,5… 1,6 раза, а спектральный состав излучения обеспечивает правильную цветопередачу. Световая отдача ламп ДРИ достигает 95 лм/Вт, что ставит их в ряд наиболее эффективных источников света. Срок службы ламп ДРИ не менее 1000 ч, а у отдельных типов, например ДРИЗ (зеркальных), достигает 7500 ч. Условия окружающей среды не оказывают существенного влияния на светотехнические характеристики ламп, поэтому их широко применяют в сельскохозяйственном производстве.

В процессе эксплуатации световой поток ламп ДРИ уменьшается в 1,3…1,5 раза быстрее по сравнению с лампами ДРЛ. При отклонениях напряжения в сети в пределах ±10% световой поток изменяется в 3 раза и мощность в 2,2 раза от номинальных значений.

Использование в газоразрядных лампах ртути требует особого внимания к их утилизации, так как вылившаяся из разбитой лампы ртуть и особенно ее пары несут серьезную опасность для организма человека, животных и растений, вызывая их отравление.

Натриевая лампа высокого давления (ДНаТ)(рис. 9.11, а) устроена следующим образом. Колба лампы выполнена из термостойкого стекла3.Внутри колбы расположена горелка1,выполненная из по- ликристаллической окиси алюминия (керамики), хорошо пропускающей световое излучение и устойчивой к длительному воздействию насыщенных паров натрия. Кроме паров натрия, горелка заполнена ксеноном и парами ртути. На торцы горелки напаяны металлические колпачки с вольфрамовыми активированными электродами2.Для теплоизоляции горелки из колбы лампы откачан воздух.Рис. 9.11. Лампа ДНаТ:

а

— устройство;б—схема включения

Для работы лампыELнеобходимы: балластное устройство в виде дросселяLL,ограничивающего и стабилизирующего ток разряда, и зажигающее устройствоЗУ(рис. 9.11,б),представляющее собой генератор импульсов с частотой 500 Гц, образующихся в результате периодического разряда конденсатора на первичную обмотку импульсного трансформатора. При этом во вторичной обмотке трансформатора, включенной параллельно лампе, индуцируются импульсы напряжения с амплитудой около 4,5 кВ, обеспечивающие зажигание разряда в горелке.Продолжительность разгорания лампы ДНаТ — 10… 15 мин, повторное зажигание после погасания лампы происходит через

И др.).

Натриевые лампы не подвержены воздействию окружающей среды, надежно зажигаются и работают в интервале температур от —60 до +40 °С. Их характеристики мало меняются от положения в пространстве. Эти лампы выпускают в двух исполнениях: для работы цоколем вверх и цоколем вниз.

1…2 мин. Излучение паров натрия имеет световую отдачу до 150 у лампы NAV E600SUPER лм/Вт, но 70 % его сосредоточено в диапазоне длин волн 560…610 нм. Желто-оранжевое излучение лампы обеспечивает хорошее различие положения и формы объектов, но цветопередача может быть оценена как удовлетворительная. Поэтому натриевые лампы применяют в тех случаях, когда к осветительной установке не предъявляют особых требований даже при удовлетворительной цветопередаче (освещение больших пространств, улиц, автострад, стоянок техники, складских площадок

Рис. 9.12. Устройство ксеноновой лампы:

1—

внешняя стеклянная трубка;2—разрядная кварцевая трубка;3 —электрод;4 —патрубок для охлаждающей воды

На светотехнические характеристики натриевых ламп сильно влияют отклонения напряжения сети от номинального значения. Так, отклонения напряжения сети в пределах от +10 до -10 % вызывают отклонения светового потока лампы на 13… 15 %, мощности лампы — на 8…20 %.

Работа натриевых ламп на переменном токе сопровождается заметной пульсацией светового потока с двойной частотой.

Ксеноновые лампы

(рис. 9.12) выпускают с воздушным и водяным охлаждением. Лампа с естественным воздушным охлаждением типа ДКсТ представляет собой кварцевую трубку определенных размеров, зависящих от мощности лампы, на торцах которой смонтированы электроды. Они изготовлены из торированного вольфрама. Электрические вводы выполняют либо в виде контактных штырей, либо в виде гибких многопроволочных медных жгутов, оснащенных наконечниками для подключения лампы к сети при помощи болтовых соединений.

Ксеноновые лампы не требуют балластного сопротивления, но для их зажигания необходимо зажигающее устройство. После зажигания лампы пусковое устройство может быть отключено и использовано для зажигания другой лампы.

Излучение ксеноновых ламп в видимой части спектра весьма близко к естественному солнечному, однако в спектре их излучения имеется избыток инфракрасного и ультрафиолетового излучений, что требует коррекции спектральной плотности излучения в этих областях при выращивании растений и освещения обширных пространств.

Дуговые ксеноновые лампы обладают наибольшими из всех источников света единичной мощностью и световым потоком. Срок службы их ограничен, но при стабилизации питания ламп средний срок службы может достигать нескольких тысяч часов. Световая отдача этих ламп находится в диапазоне 20…45 лм/Вт.

ЛАЗЕРЫ

В традиционно используемых источниках света (солнце, электрические лампы накаливания и газоразрядные) спонтанное излучение атомов происходит беспорядочно и неодновременно, с различными частотами, непостоянством разности фаз и направлением распространения в пространстве. Один из существенных недостатков подобных источников — невозможность фокусировки энергии излучения в малом объеме, размеры которого были бы меньше самого источника света; невозможность получения высоких значений яркости излучения.

В отличие от спонтанного хаотического излучения традиционных источников возможен принципиально иной механизм излучения фотонов возбужденными атомами, основанный навынужденном, или индуцированном, излучении— процессе, определяющем принцип работы лазера.Лазеры характеризуютсякогерентнымизлучением атомов, создающих узконаправленный пучок монохроматического света, яркость которого превосходит яркость свечения люминесцентной лампы в миллионы раз. Излучение современных мощных лазеров сравнимо по плотности энергии и даже превышает плотность энергии ядерного взрыва. Уровень выходной мощности у лазеров достигает 1013 Вт в импульсном режиме и 105 Вт в непрерывном режиме.На рисунке 9.13 приведена схема устройства газового лазера, работающего на смеси гелия и неона. Разрядная трубка /является активным элементом, внутри которой создается тлеющий электрический разряд при подключении электродов 2 и3(катода и анода) к источнику высокого напряжения. На концах трубки имеется плоское (полупрозрачное) зеркало4и сферическое зеркало 8,полностью отражающее лазерное излучение. Зеркала образуют оптический резонатор. Торцы активного элемента отшлифованы под определенным углом (Брюстера) и закрыты окнами 6,что необходимо для создания поляризованного излучения лазера.

Рис. 9.13. Схема устройства лазера

Оптический резонатор с активным элементом укреплены в защитном корпусе /, имеющем выходное отверстие5со стороны плоского зеркала.Тлеющий разряд возбуждает атомы гелия и переводит их на ме- тастабильный уровень. Возбужденные атомы гелия, сталкиваясь с атомами неона, сообщают им энергию, переводя их также в возбужденное состояние.

С этих высоких энергетических уровней атомы неона переходят на промежуточный уровень. Переходы атомов с высших энергетических уровней на низший сопровождаются индуцированным когерентным излучением. В газовом лазере имеет место многократное отражение осевого луча в зеркальном резонаторе, что приводит к формированию мощного потока излучения. Вместе с фотонами, летящими под углом к оси трубки, некогерентное излучение выходит через ее боковую поверхность и наблюдается в виде розового свечения, равномерно распределенного по всему объему трубки.

Спектральные закономерности в спектре атома водорода.

Каждая частота излучений атома водо­рода составляет ряд серий, каждая из которых образуется в процессе перехода атома в одно из энерге­тических состояний из всех верхних энергетических состояний, то есть состояний с большей энер­гией, используя терминологию спектроскопии — переходов электрона с верхних возбужденных уровней энергии на нижние уровни.

.

На рисунке а) вы можете увидеть переходы на 2-ой возбужденный энергетический уровень, которые составляют серию Бальмера, частоты излучения которой находятся в ви­димой области спектра. Серия имеет название по имени швейцарского учителя И. Бальмера, который еще в 1885 году основываясь на результатах экспериментов вывел формулу для определения частот видимой части спектра водорода:

где n — 3, 4, 5, …;

R — постоянная Ридберга, которая определена из спектральных данных и позже вычисленная основываясь на теории атома Бора.

В этой формуле v — не частота, которая измеряется в с-1, а вол­новое число, которое равно обратному значению длины волны 1/λ и которое измеряется в м-1.

Что бы определить частоты излучения других серий атома водорода вместо двойки в знаменате­ле первой дроби в формуле необходимо подставить числа 1, 3, 4, 5.

Номера нижних энергетических уровней, при переходе на которые с верхних уровней излучаются соответствующие серии:

Полосатые спектры состоят из отдельных полос, которые разделены темными промежутками. При по­мощи весьма хорошего спектрального аппарата можно увидеть, что все полосы состоят из большого числа близко лежащих линий. Полосатые спектры излучают молекулы, которые не связаны либо слабо связаны друг с другом.

Для наблюдения молекулярных спектров, как и для наблюдения линейчатых спектров, применяют свечение паров в пламени либо свечение газового разряда.

Спектры поглощения тоже делятся на 3 типа (сплошные, линейчатые и полосатые), что и спектры испускания. Поглощение света тоже зависит от длины волны. Так, красное стекло пропускает волны, которые соответствуют красному свету (λ ≈ 8 · 10-5 см), и поглощает остальные.

Газ интенсивнее всех поглощает свет тех длин волн, которые он испускает в сильно нагретом состоянии.

Устройства, генерирующие УФ-излучениеВерно выбранные параметры источника УФ-света — залог правильности экспонирования печатной формы и быстроты полимеризации УФ-лака или краски. О свойствах источников ультрафиолета читайте в статье ученых из Львова.

В. В. Шибанов, В. Б. Репета, Украинская академия печати

Устройства, генерирующие УФ-излучение, применяются в полиграфии и копировально-множительных технологиях со времени появления и практического использования бессеребряных светочувствительных материалов, например, диазосоединений, то есть с середины 30-х гг. прошлого века. С 50-х гг. и до настоящего времени эти устройства применяются для облучения позитивных и негативных фоторезистов. И все же самое широкое распространение УФ-облучатели получили с конца 60-х гг. в связи с нарастающими объемами производства и расширяющимися сферами применения в полиграфии и других сферах различных типов фотополимеризующихся материалов (ФПМ). Устройства, генерирующие УФ-излучение, обычно включают следующие атрибуты:

  • источники излучения;
  • силовые агрегаты для запуска и регулирования электропитания источников излучения;
  • светонаправляющие конструкции;
  • детекторы светового потока;
  • вентиляторы и холодильники рабочей зоны;
  • приспособления для закрепления, вакуумирования или дезаэрирования облучаемых объектов;
  • таймеры;
  • световые фильтры;
  • рассеиватели;
  • защитные экраны и прочие составляющие.
Комментарий специалиста

Европейские УФ-лампы

В настоящее время европейские производители ламп УФ-спектра предлагают большой ассортимент продукции для полиграфического оборудования. УФ-лампы находят свое применение в УФ-сушках для всех видов печати и лакирования, экспонирующем оборудовании для шелкотрафарета, в офсетных копировальных рамах.

В зависимости от спектра излучения мы условно разделяем УФ-лампы на ртутные и металло-галогенные. Ртутные лампы среднего давления изготавливаются в диапазоне мощности от 1 до 31 кВт и длиной до 2,8 м. Металло-галогенные лампы имеют, как правило, меньшую длину — до 1 м. Введенные в рабочую зону металло-галогенной лампы различные соли металлов (помимо ртути) могут рассматриваться как «посторонние загрязняющие» вещества. Они, с одной стороны, обеспечивают заданный спектр, а с другой стороны, влияют на стабильность дугового разряда. Поддержание стабильной дуги длиной более 1 м в металло-галогенных лампах является очень сложной, а иногда и неразрешимой задачей.

При этом в настоящее время металло-галогенные лампы со специально подобранным спектром могут решить проблему отверждения таких всегда сложных для печатника красок, как белая, черная, «металлики». Возможно изготовить лампу для определенного вида краски. Введение в спектр излучения лампы дополнительных полос спектра, к которым чувствительна именно данная краска, — одно из направлений развития производства УФ-ламп в Европе.

При работе большинства УФ-ламп, используемых в полиграфии, образуется озон. Однако сейчас все больший спрос получают и так называемые «безозоновые» лампы. Использование кварца со специальными включениями титана позволяет «отрезать» или существенно сократить излучение в области спектра от 200 до 235 Нм, где и генерируется озон. Использование таких ламп решает проблему удаления озона из рабочей зоны и, соответственно, необходимости дополнительного оборудования. Стоимость «безозоновых» ламп может быть на 15–20% выше, чем аналогичных традиционных ламп.

Если говорить о сроке службы УФ-ламп, то европейские производители предоставляют гарантию на 1000 ч работы для ртутных ламп и 500 ч работы для металло-галогенных ламп. Это стандарт. Но лампы могут служить значительно дольше заявленного гарантийного срока при должном уходе и правильных условиях эксплуатации. Огромное значение имеет эффективное охлаждение лампы: пагубные последствия имеют как перегрев, так и переохлаждение. Согласно статистике, около 90% ламп, возвращенных производителю, имели проблемы, связанные с охлаждением. Поэтому крайне важен постоянный мониторинг состояния ламп и ведение журнала учета по каждой лампе.

Новейшие технологии и современное производство позволяют изготовить УФ-лампу, удовлетворяющую практически любым требованиям заказчика. Можно заказать лампу с гарантированно увеличенным сроком службы или лампу, которая имеет четко заданный спектр излучения, лампу очень длинную — более 2 м — или со специальными геометрическими параметрами. В настоящее время можно выбрать надежного производителя УФ-ламп, который будет внимателен ко всем вашим запросам:

  • Ртутные лампы среднего и высокого давления. Тип AM (Amba Lamps, Великобритания);
  • Ртутные лампы среднего и высокого давления. Тип AC (Alpha Cure, Великобритания);
  • Металло-галогенные лампы. Тип AM (Amba Lamps, Великобритания);
  • Металло-галогенные лампы. Тип AC (Alpha Cure, Великобритания).

Светлана Мамаева, руководитель отдела комплектующих и оборудования, компания ATDesign

УФ-лампы компании Amba Lamps (Великобритания)

Можно сказать, что кардинальное влияние на конструкционные и технологические параметры устройств, генерирующих УФ-излучение, имеют три «э»-фактора:

  • эволюция составов и технологий ФПМ;
  • энергосбережение;
  • экологические проблемы.

Целью нашей статьи является обобщение научно-технической и коммерческой информации, касающейся современных устройств, используемых в полиграфии для генерирования и формирования потоков УФ-излучения. При этом мы считаем необходимым избегать предоставления информации, которую можно было бы классифицировать как рекламную.

Свойства УФ-излучения

Ультрафиолетовое излучение является частью диапазона оптических излучений (включающего ультрафиолетовую, видимую и инфракрасную области), который простирается в границах от 10 до 1 млн нм. Область УФ-излучений можно условно разделить на три дистанции:

  • УФ-А — от 315 до 400 нм;
  • УФ-В — от 280 до 315 нм;
  • УФ-С — от 100 до 280 нм.

При воздействии УФ-А излучения на человеческую кожу наблюдается загарный эффект, то есть происходит пигментация; воздействие лучей УФ-В вызывает эритемный эффект: происходит покраснение кожи и/или появление ожогов; лучи УФ-С имеют бактерицидное действие. В фотохимии УФ-область чаще подразделяют на ближний (300–400 нм), дальний (180–300 нм) и вакуумный (10–180 нм) ультрафиолет. Название «вакуумный ультрафиолет» говорит о том, что излучение этого диапазона поглощается воздухом, а точнее, основными его составляющими: кислородом и азотом — поэтому для его распространения используют вакуум. Практического применения в полиграфии этот диапазон в настоящее время не имеет.

Так как энергия квантов света обратно пропорциональна длинам волн, то энергия фотонов в областях ближнего и дальнего УФ-излучения изменяется приблизительно от 300 до 600 кДж/моль соответственно. Этой энергии вполне достаточно для осуществления в облучаемых ФПМ фотохимических и фотофизических процессов, ответственных за технологическое применение таких материалов.

Используемые в полиграфических технологиях искусственные источники УФ-излучения предназначены, в основном, для двух целей: формирования изображений (изготовление фотополимерных печатных форм офсетной, трафаретной, высокой, в том числе флексографской, печати) и полимеризации УФ-красок и УФ-лаков.

Ртутные дуговые лампы

Они известны уже более 70 лет. Эти источники света излучают в широком оптическом диапазоне, включающем УФ-, видимое и ИК-излучение. Излучение генерирует светящийся дуговой разряд, возникающий при прохождении тока в газовой среде, заполненной парами ртути или парами ртути в смеси с другими веществами и инертными газами, а также плазмой. Носителями тока в газовом разряде являются электроны и катионы, возникающие при соударении электронов с атомами, движущимися в электрическом поле межэлектродного пространства. В результате таких соударений происходит не только ионизация атомов газовой среды, но и их активация, то есть перевод части атомов в возбужденное состояние при котором внешние (валентные) электроны переходят на более энергоемкие электронные орбитали. Время жизни возбужденных атомов очень небольшое (малые доли секунды), поэтому они очень быстро возвращаются в основное состояние, излучая избыточную энергию в виде квантов света, то есть имеет место люминесценция. При этом происходит превращение электрической энергии в световую.

Так как величина энергии электронных переходов строго детерминирована (квантована) и определяется природой атомов, то и излучение энергии возбужденными атомами происходит в определенном энергетическом диапазоне — спектре. Характер спектра излучения может быть различным: полосатым (линейчатым) или сплошным (непрерывным). Каждой линии в спектре соответствует электронный переход, а при очень большом их количестве все линии сливаются в континуум, образуя непрерывный спектр. Интенсивность полос в спектре зависит от вероятности осуществления тех или иных переходов. Для возбужденных атомов ртути характерным является линейчатый спектр. При этом две линии, соответствующие длинам волн 185 и 253,7 нм, являются наиболее интенсивными. Они называются резонансными линиями излучения и соответствуют переходам из нижних возбужденных состояний в основное невозбужденное состояние. Кроме них в спектре ртутного дугового разряда имеется ряд линий, которые при высоком давлении паров ртути расширяются и могут сливаться в непрерывный спектр.

Для возникновения ртутного разряда к электродам прикладывают электрическое напряжение, величина которого зависит от конструкционных характеристик лампы (материала электродов, расстояния между ними, диаметра лампы), природы и давления газового заполнения и прочих факторов. После подачи напряжения на электроды в лампах высокого давления происходят последовательно следующие процессы:

  • пробой газоразрядного промежутка;
  • нагрев электродов;
  • разгорание дугового разряда и увеличение давления ртутных паров;
  • установление стационарного режима работы.

Движение заряженных частиц в электрическом поле имеет направленный характер. Скорость движения частиц различна, зависит от их природы (электроны, ионы, атомы) и может быть охарактеризована соответствующей температурой. Для облегчения зажигания ламп иногда устраивают специальные зажигающие электроды, которые, впрочем, снижают механическую прочность ламп и удорожают их стоимость. Время, в течение которого лампа полностью разгорается и выходит на стационарный режим работы, составляет 5–15 мин, что показано на рис. 1.

Рис. 1. Зависимость интенсивности излучения ртутных ламп низкого (ЛУФ-80) и среднего (ДРТ-400) давления от времени их работы

В зависимости от величины давления паров различают три типа ртутно-дуговых ламп:

  • низкого давления (давление паров ртути от 0,01 до 1 мм рт. ст. или от 1,33 до 133 Па);
  • среднего давления (от 1 до 3 атм или до 3×105 Па);
  • высокого давления (до нескольких десятков атм. или от 3×105 до 107 Па).

Встречается также следующая классификация: лампы низкого, высокого и сверхвысокого давления. Кроме паров ртути, дуговые лампы обычно заполняют инертным газом (чаще всего аргоном) до давления 10–50 мм рт. ст. для облегчения зажигания разряда и продления срока службы электродов, которые изготовляют из тугоплавких материалов: обычно вольфрама, а также вольфрама с добавками тугоплавких оксидов тория, бария или кальция.

Каждый тип ртутных ламп имеет характерный спектр излучения: лампы низкого давления излучают линейчатый спектр, большая часть энергии которого излучается в области резонансных полос (область УФ-С); лампы среднего и особенно высокого давления наряду с линейчатым содержат непрерывный спектр, который расширяется и смещается с увеличением давления паров ртути в видимую область (см. таблицу).

Световая отдача

Рис. 2. Зависимость световой отдачи ртутного разряда от давления ртутного пара (постоянный ток 4 А; диаметр трубки 27 мм)

Световая отдача ртутного разряда зависит от величины давления паров ртути в лампе. Из рис. 2 видно, что с увеличением давления паров световая отдача сильно возрастает. Для ламп низкого давления световая отдача мала (область первого экстремума). Точка С характеризует раздел между областями низкого и высокого давления. Вероятность поглощения линий резонансного излучения невозбужденными атомами паров ртути увеличивается пропорционально их концентрации, то есть при увеличении давления. Поэтому в лампах высокого давления самопоглощение резонансных линий велико, а полосы в спектре расширяются. Увеличение давления в лампе вызывает рост световой отдачи, которая асимптотически приближается к величине 60–70 лм/Вт.

При низком давлении паров ртути дуговой разряд заполняет все поперечное сечение трубки лампы, а при увеличении давления наблюдается характерное стягивание (контрагирование) разряда к оси трубки. Максимальная мощность ламп низкого давления — до 150 Вт. Ртутные лампы среднего и высокого давления обладают высокой энергетической светимостью и большой мощностью: от сотен ватт до 50–60 кВт.

Размеры ртутных ламп среднего давления могут достигать метровой величины при диаметре колб до 30–40 мм. Размеры ламп сверхвысокого давления заметно меньше, а из-за небольшого расстояния между электродами такие лампы имеют короткую дугу и рассматриваются как точечные источники света.

Температура стенок колб (трубок) газоразрядных ламп низкого давления относительно невысока (на десяток градусов выше комнатной). У колб ртутных ламп среднего и высокого давления она достигает 500–900?С, поэтому практически незаменимым материалом для изготовления колб ртутных ламп является кварц, который выдерживает большие механические нагрузки, имеет высокий коэффициент пропускания во всем практически необходимом (и даже более того) диапазоне спектра излучения (от 200 до 2600 нм), выдерживает высокие рабочие температуры (до 1100?С) и характеризуется очень небольшим коэффициентом линейного расширения (6×10-7 1/град), что гарантирует сохранение его целостности при резких перепадах температур.

Обычная толщина стенок ртутных ламп среднего и высокого давления, изготовленных из кварца, равна 1,5–4 мм. Для трубок низковакуумных ртутных ламп (бактерицидных ламп) используют кварц либо специальное увиолевое стекло. Срок службы кварцевой колбы сильно уменьшается при повышении рабочей температуры стенок выше 900?С. Снижение рабочей температуры на 100?С продлевает срок работы лампы в 5–10 раз, но снижает светоотдачу и давление паров ртути. Ресурс работы ламп низкого давления в сотни раз больше, чем ламп среднего и высокого давления.

Корректировка спектра излучения

Важным условием осуществления фотохимических реакций, в том числе фотоинициированной полимеризации ФПМ, УФ-лаков и УФ-красок, является совпадение или достаточное перекрывание спектров излучения источника и поглощения облучаемого материала, что следует из сформулированного более 150 лет тому назад фундаментального закона фотохимии. Реакции инициирования полимеризации фотополимеризующихся композиций (ФПК) происходят при поглощении света в небольшом диапазоне спектра от 320 до 380 нм (в УФ-А диапазоне), что обусловлено специальным подбором фотоинициаторов или фотоинициирующих систем. При этом исходят из необходимости избежать светочувствительности ФПК в области видимого света (для удобства выполнения технологических операций с пластинами и другими материалами в незатемненных помещениях) и нецелесообразности применения дальнего УФ-излучения (экологической, экономической и технологической).

Рис. 3. Спектр излучения ртутной лампы низкого давления: 1 — без люминофора (БУВ-30) и 2 — с люминофором (ЛУФ-80)

Очевидно, что применение для этих целей ртутных ламп низкого давления, излучающих в УФ-С диапазоне, будет малоэффективным из-за несовпадения спектров излучения и поглощения. Вместе с тем, ртутные лампы низкого давления выгодно отличаются от ламп среднего и высокого давления малым энергопотреблением и невысокими температурами на их поверхности и в рабочей зоне. Для исправления спектра излучения таких ламп и обогащения его полосами излучения в области 300–400 нм (УФ-А) на внутреннюю поверхность колб (трубок) ламп наносят один или несколько слоев люминофоров, которые поглощают излучение паров ртути в области 220–300 нм (УФ-С) и преобразуют его (люминесцируют) в длинноволновое излучение в области 300–400 нм и более. Как люминофоры чаще всего используют неорганические вещества или их смеси, например, силикат бария, вольфрамат кальция, магния, фосфат кальция. Спектры излучения (УФ-область) ламп низкого давления, которые используют, в частности, в полиграфии, приведены на рис. 3.

Для корректировки спектра излучения ртутных ламп среднего и высокого давления в дуговой разряд вводят вещества или соединения, которые дополняют спектр излучения паров ртути недостающими полосами и/или увеличивают их интенсивность. Введение добавок йодидов (галоидов) ряда металлов (таллия, галлия, свинца, натрия и др.) позволило в два и более раз увеличить световую отдачу ламп. Принцип работы так называемых металлгалоидных ламп заключается в том, что молекулы йодидов металлов разлагаются на атомы в зоне высокотемпературного ртутного разряда (дуги). Образовавшиеся атомы находятся в возбужденном (неравновесном) состоянии. Поэтому они излучают свет, диффундируя за пределы зоны разряда, охлаждаются и взаимодействуют с образованием исходных молекул, которые вступают в новый цикл превращений. На рис. 4 изображена часть спектра излучения металлгалоидной лампы с добавкой йодида свинца. Видно, что такие лампы характеризуются большей световой отдачей в области 360–400 нм, то есть в зоне поглощения ФПМ.

Механизм полимеризации

Рис. 4. Спектр излучения металлгалоидной лампы с добавкой йодида свинца и галлия

Облучение молекулярного кислорода светом с длиной волны менее 240 нм (так называемый континуум Герцберга, область Шумана-Рунге) приводит к образованию сначала возбужденных атомов кислорода, которые легко реагируют с молекулами кислорода и образуют трехатомные молекулы озона. Две молекулы озона при взаимодействии между собой распадаются на три молекулы кислорода, поэтому концентрация озона в газе при электрохимическом методе его получения относительно небольшая (максимум 5–7% объема), а при фотохимическом — лишь доли процента. Озон поглощает в оптическом диапазоне ряд полос от вакуумного ультрафиолета до ИК-области. В частности, в широком континууме от 200 до 300 нм с почти симметричным пиком в области 254 нм. Поглощение этой полосы приводит к распаду озона на молекулярный кислород и очень активный атом синглетного кислорода. И озон, и синглетный атомарный кислород могут активно взаимодействовать с химическими веществами, в частности, с компонентами ФПК, что вызывает деструкцию (растрескивание) пластин и снижение их физико-механических свойств. Предельно допустимая концентрация озона в воздухе 1 мг/м3, поэтому необходима вентиляция помещений и рабочей зоны агрегатов, в которых он образуется. В то же время озонирование пластин и облучение их УФ-излучением с длиной волны 254 нм устраняет липкость поверхности, что используется на практике при выполнении операции финишинга готовых флексографских фотополимерных печатных форм.

Молекулярный кислород является достаточно сильным ингибитором фотоинициированной радикальной полимеризации ФПМ, так как дезактивирует возбужденные состояния фотоинициаторов, а также взаимодействует с первичными продуктами их диссоциации или растущими макрорадикалами с образованием значительно менее реакционноспособных пероксидных радикалов, что тормозит полимеризацию. Концентрация молекулярного кислорода в ФПМ определяет длительность индукционного периода, то есть времени, в течение которого происходит подавление роста макромолекул. После полного расходования молекулярного кислорода скорость фотополимеризации сильно возрастает. Таким образом, ускорить процесс фотоинициированной радикальной полимеризации и увеличить его полноту, то есть сократить длительность операции экспонирования, можно двумя путями: устранением молекулярного кислорода или увеличением концентрации квантов излучения (интенсивности света), инициирующего полимеризацию. Молекулярный кислород присутствует в ФПК вследствие его растворения в компонентах ФПК, что происходит при их синтезе, который проводят, как правило, в аэробных условиях, и в результате диффузии кислорода из окружающего пространства. Равновесная концентрация растворенного кислорода в основных компонентах ФПК сравнительно невелика, поэтому преимущественным путем пополнения молекулярного кислорода является его проникновение (диффузия) извне. Коэффициенты диффузии молекулярного кислорода сильно зависят от физико-химических свойств ФПК и их компонентов. В твердых (по агрегатному состоянию) фотополимеризующихся материалах (ТФПМ), к которым относятся и флексографские ФПМ, коэффициенты диффузии молекулярного кислорода на два-четыре порядка меньше, чем в жидких фотополимеризующихся материалах (ЖФПМ), к которым относятся УФ-лаки и УФ-краски. Растворенный в ТФПМ молекулярный кислород можно удалить вытеснением его инертным газом (старая технология так называемого газового кондиционирования пластин) или фотохимическим связыванием (современная технология, предполагающая предварительное недлительное облучение пластин со стороны пленочной основы). Следующий за предварительным экспонированием процесс основного экспонирования в таком случае протекает без индукционного периода, так как диффузия молекулярного кислорода извне очень небольшая, а время, необходимое для равновесного насыщения слоя ФПК кислородом, значительно больше времени основного экспонирования.

Продолжение в следующем номере

Сколько должен гореть свет в аквариуме

Большинство растений и рыбок, выращиваемых любителями, относятся к тропическим видам. Соответственно, оптимальный световой режим для них – это 12-часовой световой день, а значит, требуется ночная подсветка аквариума. При этих условиях создаются оптимальные условия для развития большинства видов. Однако, стоит учитывать, что отдельные виды растений или рыб могут нуждаться в более коротком дне, а у других имеются встроенные биологические часы. Излишнее досвечивание может привести к постепенному вырождению растения за счет сбоя в его «программе». Особенно это касается тех видов, которые либо происходят не из тропических районов акватории, либо вовсе относятся к обитателям более северных широт, как, например, кувшинка. В последнем случае крышка с подсветкой для аквариума не поможет. Растение свернет свои лепестки тогда, когда это с его точки зрения необходимо сделать.

Таким образом, правильное освещение в аквариуме с помощью ламп складывается из нескольких показателей:

  1. Спектр. Должен присутствовать красно-желтый, сине-фиолетовый, зеленый диапазон. Это нужно для нормального развития растений и внешней эстетичности.
  2. Мощность источника светового потока. С учетом световых потерь рассчитывается приблизительно как 70 Вт на 100 литров. Это и есть ответ на вопрос, сколько люмен требуется для вашего аквариума.
  3. Длительность освещения. Для тропических видов света нужно много и долго – 11–12 часов. Для остальных по рекомендациям конкретно для каждого вида.
  4. Равномерность света. Обеспечение освещенности на всех уровнях, если это не противоречит привычным условиям обитания вида.

Как фотосинтез влияет на развитие растений: кратко

В процессе фотосинтеза образуются углеводы из неорганических веществ под действием энергии солнечного облучения. Из них формируются органические клетки.

Процесс протекает по химической формуле при последовательном чередовании двух фаз:

  1. световой, когда из воды выделяется кислород и водород;
  2. темновой — происходит поглощение углекислого газа с образованием углеводов.

Для своего развития растения нуждаются в обеих фазах, но действие спектра естественного солнечного света в зимний период очень короткое.

Поэтому при выращивании рассады дополнительная подсветка искусственными источниками благоприятно сказывается на ее развитии.

Важно представлять, что спектр излучения и его мощность необходимо подбирать оптимально, ведь современные электрические лампы создаются большим ассортиментом с различными техническими характеристиками. Их параметры следует тщательно анализировать под все этапы развития рассады, учитывать влияние спектра

Их параметры следует тщательно анализировать под все этапы развития рассады, учитывать влияние спектра.

Цвет лампыВлияние на рост и развитие
Красный (Red)Ускоряет развитие семян, формирование ростков, улучшает цветение, способствует образованию завязи.
Оранжевый (Orange)Обеспечивает лучшее плодоношение.
Желтый (Yellow) и зеленый (Green)Оказывают влияние на рост.
Фиолетовый (Purple) и синий (Blue)Стимулируют развитие корней, ускоряют фазу цветения
Ультрафиолет (Ultraviolet)В небольших количествах ограничивает избыточный рост, но его повышенные дозы вызывают ожоги листьев и стеблей.

Почему свет — ключ к пониманию космоса?

Примерно в то самое время, как Уильем Гершель обнаружил инфракрасное излучение, Йозеф Фраунгофер, сын бедного стекольщика, работал в мастерской отца. После его смерти юный Фраунгофер в возрасте 12 лет поступил обучаться, а затем работать в стекольную мастерскую в Мюнхене. Благодаря череде случайных событий, будущий физик в 1806 году получил математическое образование и стал ассистентом математического и оптического института в Мюнхене. Именно там изготавливались линзы и оптические приборы. К 27 годам, Йозеф Фраунгофер стал ведущим создателем высококачественных линз для телескопов и оптического оборудования.

В поисках наилучшего стекла для линз Фраунгофер экспериментировал с призмами. Так как свет — это одновременно частица и волна, также как длина волны звука определяет высоту тона, который мы слышим, длина световой волны определяет цвет, который мы видим. Но как призма разделяет цвета, скрытые в луче солнечного света? Когда свет движется сквозь воздух или космос, все его цвета движутся с одной скоростью. Но столкнувшись со стеклом под углом, свет замедляется и меняет свое направление. Получается, что внутри призмы каждый цвет движется с разной скоростью.

Столкнувшись со стеклом под углом, свет меняет свое направление

В стекле фиолетовый цвет — его световые волны одни из самых коротких — замедляется больше красного, у которого волны длиннее всего. Эти изменения в скорости разделяют цвета так, что они движутся в немного разных направлениях. Именно это открытие мог совершить Исаак Ньютон, но звезды распорядились иначе. Открытие Фраунгофера положило начало астрофизике — разделу астрономии, который изучает физические процессы в астрономических объектах, используя принципы физики и химии. Но как? Фраунгофер увидел, что в свете запечатлены вертикальные черные линии — самый настоящий секретный код. Как рассказывает астрофизик и популяризатор науки Нил Деграсс Тайсон в сериале “Космос: пространство и время”, этот шифр пришел к нам из “другой вселенной”. На расшифровку послания, заключенного в эти загадочные черные линии ушло без малого 100 лет.

Вертикальные черные линии — ключ к пониманию космоса

Ртутные лампы типа ДРЛ

Рисунок 1. Схема лампы ДРЛ: 1 – ртутно-кварцевая горелка; 2 – резисторы; 3 – внешняя колба; 4 – слой люминофора; 5 – рабочие электроды; 6 – вспомогательные электроды

Рассмотренная в статье «Работа лампы ДРЛ» кварцевая горелка подвержена сильному влиянию внешней среды, от которой зависят условия охлаждения. Стабильность работы лампы с такой горелкой обеспечивается размещением ее внутри внешней колбы. Внутренняя поверхность внешней колбы покрывается слоем люминофора, который за счет поглощения ультрафиолетовой части излучения ртутного разряда добавляет к видимому излучению этого разряда недостающее в нем излучение в красной области спектра. Для обеспечения охлаждения кварцевой горелки не только излучением, а также конвекцией и теплопередачей внешняя колба наполняется газом, который должен быть инертным по отношению к люминофору и деталям монтажа лампы. В качестве наполняющего газа применяют смесь аргона с азотом.

Устройство лампы ДРЛ показано на рисунке 1. Присоединение ламп к сети осуществляется с помощью резьбовых цоколей, аналогичных применяемым для ламп накаливания: Е27 – для ламп мощностью до 250 Вт и Е40 – для ламп большей мощности. Для облегчения зажигания лампа выполняется трех- или четырехэлектродной. У последних основные и вспомогательные электроды соединяются через резисторы.

Форма и размеры внешней колбы и положение горелки в ней выбирают с таким расчетом, чтобы все ультрафиолетовое излучение горелки падало на слой люминофора и во время работы и во время работы лампы слой люминофора имел оптимальную для его работы температуру.

Нагрев внешней колбы происходит за счет поглощения части излучения разряда слоем нанесенного на нее люминофора и стеклом, а также теплопередачи через наполняющий колбу инертный газ. Охлаждение осуществляется благодаря излучению нагретого стекла и теплопередаче через окружающий воздух.

Равномерность температуры поверхности колбы может быть достигнута, если, пренебрегая в первом приближении конвекцией наполняющего колбу инертного газа, выполнять ее в виде поверхности, обеспечивающей равномерную облученность. Расчеты показывают, что центральная часть колбы должна иметь поверхность, близкую к эллипсоиду вращения, с большой осью, совпадающей с осью горелки. Поправка на конвекцию вынуждает несколько увеличивать диаметр той части колбы, которая при работе лампы оказывается наверху. Так как лампы практически эксплуатируют в любом положении, то поправок в форму колбы не вносят.

В ряде конструкций ламп колба выполняет роль оптического элемента, перераспределяющего световой поток. В этом случае форма и размер колбы должны рассчитываться, как это делается для светильников, причем в расчете должен также учитываться ее тепловой режим.

Для исправления цветности ламп типа ДРЛ применяют различные виды люминофоров. Применение фосфат-ванадат-иттриевого люминофора вместо фторогерманата магния позволило улучшить параметры ламп типа ДРЛ.

Применение люминофора, нанесенного на внутреннюю стенку внешней колбы, с одной стороны, приводит к добавлению в спектре недостающего красного излучения, а с другой – вызывает поглощение в этом слое части видимого излучения. С ростом толщины слоя люминофора поток излучения лампы имеет максимум при определенной толщине слоя, в то время как проходящий через слой люминофора световой поток разряда постепенно уменьшается. Для решения вопроса об оптимальной толщине слоя люминофора и общей оценки его эффективности для характеристики ламп типа ДРЛ введено понятие «красное отношение». Красным отношением называют выраженное в процентах отношение красного светового потока, добавляемого люминофором, к общему световому потоку ламп. Очевидно, что лучшими будут люминофор и такой его слой, которые при создании красного отношения, достаточного для обеспечения правильной цветопередачи, обеспечивают максимальный световой поток лампы в целом, то есть наибольшую световую отдачу.

Красное отношение принято выражать в процентах зависимостью

где φ (λ) – спектральная плотность потока излучения лампы; V (λ) – относительная чувствительность глаза.

Красное отношение для ламп типа ДРЛ с оптимальной толщиной люминофора из фторогерманата и арсената магния достигает 8 %, а световой поток – 87 % светового потока лампы без люминофора. Применение ортофосфатноцинковых люминофоров с добавкой стронция позволяет получить световой поток, на 15 % превышающий световой поток лампы без люминофора, и rкр = 4 – 5 %.

В процессе зажигания ламп имеет место катодное распыление активного вещества катода и стержневой части электрода. В установившемся режиме горения на переменном токе из-за перезажигания разряда в каждый полупериод распыление стержневой части электрода продолжается. Это ухудшает со временем эмиссионные свойства обеих частей электродов, соответственно растет необходимое для зажигания ламп напряжение. Распыление электродов приводит одновременно к поглощению молекул наполняющего лампу инертного газа, начальное давление которого выбиралось из условий зажигания разряда. Эти процессы приводят к образованию на стенках горелки темного налета из частиц распылившихся электродов, поглощающего излучение, в особенности его ультрафиолетовую составляющую, и красное отношение снижается. Прекращение зажигания определяет полный срок службы ламп типа ДРЛ, а нормируемое снижение световой отдачи – их полезный срок службы.

Рисунок 2. Детали конструкции горелки ртутной лампы высокого давления: 1 – основной электрод; 2 – молибденовые фольговые вводы основного электрода и электрода поджига; 3 – добавочный резистор в цепи электрода зажигания; 4 – цепь электрода зажигания

Условное обозначение ламп ДРЛ расшифровывается следующим образом: Д – дуговая, Р – ртутная, Л – люминесцентная. Цифры после букв соответствуют мощности лампы в ваттах, дальше в скобках приводится красное отношение в процентах и через дефис – номер разработки. Подавляющее большинство ламп типа ДРЛ выпускаются четырехэлектродными, то есть с дополнительными электродами для облегчения зажигания (смотрите рисунок 2). Такие лампы зажигаются непосредственно от напряжения сети. Небольшая часть ламп ДРЛ изготовляются двухэлектродными, для их зажигания применяют специальные зажигающие устройства.

Лампы ДРЛ находят применение в установках наружного освещения и для освещения высоких помещений промышленных предприятий, где не предъявляется жестких требований к качеству цветопередачи.

Влияние температуры окружающей среды сказывается прежде всего на напряжении зажигания ламп. При отрицательных температурах зажигание ламп типа ДРЛ затруднено, что связано со значительным уменьшением давления ртути, в результате чего зажигание происходит в чистом аргоне и требует более высоких напряжений, чем при наличии паров ртути. Согласно ГОСТ 16354-77 лампы типа ДРЛ всех мощностей должны зажигаться при напряжении не более 180 В при температуре окружающей среды 20 – 40 °С; при температуре -25 °С напряжениезажигания ламп увеличивается до 205 В, при -40 °С напряжение зажигания для ламп мощностью 80 – 400 Вт составляет не более 250 В, мощностью 700 и 1000 Вт – 300 В. На световые и электрические параметры ламп типа ДРЛ изменение внешней температуры практически не влияет. В таблице 1 приведены параметры ламп типа ДРЛ. Лампы имеют две модификации с красным отношением 6 и 10 %.

Таблица 1

Основные параметры ламп типа ДРЛ по ГОСТ 16357-79

Тип лампыМощность, ВтРабочее напряжение, ВТок, АСветовой поток, лмРазмеры, ммСредний срок службы
диаметр внешней колбыполная длина
ДРЛ80(6)-2 ДРЛ125(6)-2 ДРЛ250(6) ДРЛ400(6)-2 ДРЛ700(6)-2 ДРЛ1000(6)-2 ДРЛ2000(6)80 125 250 400 700 1000 2000115 125 130 135 140 145 270,80 1,15 2,13 3,25 5,40 7,50 8,003400 6000 13000 23000 40000 57000 12000081 91 91 122 152 181 187165 184 227 292 368 410 44510000 10000 12000 15000 15000 15000 6000

Что такое спектральные линии?

Но вернемся к спектру Фраунгофера. Что создает эти загадочные линии? Оказалось, они возникают, когда световые волны определенных цветов поглощаются. Вот только происходит это на совершенно ином уровне реальности — в квантовом мире.

Чтобы не запутаться, давайте вспомним что из себя представляют атомы. Итак, частица вещества микроскопических размеров и массы — наименьшая часть химического элемента и носитель его свойств — называется атомом. Атомы состоят из ядра и электронов, а само ядро атома состоит из протонов и нейтронов. При этом количество нейтронов в ядре может варьироваться от нуля до нескольких десятков. Чем меньше электронов, тем проще атом. Таким, к слову, является атом водорода. В космосе он встречается чаще других и состоит из одного электрона и одного протона. Но в квантовом мире все совсем не так, как в нашем. Так, каждый электрон вращается вокруг ядра, но его орбитали и размер строго ограничены для каждого из химических элементов. Именно по этой причине вещества так сильно отличаются друг от друга — энергетические свойства вещества определяются орбиталями его электронов. Чем орбиталь больше, тем больше энергия электрона.

Строение атома: электроны “танцуют” по орбиталям вокруг ядра

Когда Фраунгофер рассматривал солнечный свет через призму, он увеличил его спектр с помощью телескопа. Так ученый разгадал секретный шифр света — черные линии оказались ничем иным, как танцем электронов в атоме. Когда энергия электрона падает и он перескакивает на орбиталь ниже, свет, который он излучает, пропадает. Черные вертикальные линии появляются в спектре потому, что большая часть света попросту не доходит до нас. Некоторые из этих темных линий — тени, оставленные атомами водорода в атмосфере Солнца. Другие оставлены атомами натрия, железа и.т.д. Атомы разных химических элементов отбрасывают разные тени и происходит это из-за количества электронов и их орбиталей.

Получается, если взглянуть на звезду через спектрометр, можно увидеть темные линии от элементов, которые содержатся в ее атмосфере. Но с помощью спектрометра можно смотреть не только на звезды и далекие галактики. Методы спектроскопии сегодня позволяют определить состав чего угодно. Благодаря спектральным линиям Фраунгофера мы узнали, что все галактики, звезды и все живые существа на нашей планете состоят из одних и тех же элементов. Каждый элемент, где бы он ни находился, обладает своей уникальной подписью. Однако наиболее удивительным открытием из спектроскопии оказалось то, что она не способна увидеть. Речь идет о темной материи. Считается, что самая таинственная форма материи во Вселенной никак не взаимодействует с электромагнитным излучением. При этом она составляет 85% всей материи. Сегодня ученые полагают, что темная материя состоит из частиц, которые пока что не обнаружены. И несмотря на то, что сегодня у нас больше вопросов, чем ответов, история науки показывает, что мы на правильном пути.

Текущая ситуация

Лампы, используемые сейчас для борьбы с инфекциями, делятся на кварцевые и бактерицидные. Принцип их работы основан на плазменном разряде в парах ртути.

Кварцевая лампа — это ртутная лампа высокого давления. По конструкции она, как правило, аналогична лампам ДРЛ, до сих пор кое-где используемым для уличного освещения, но не имеет люминофора. Но бывают и кварцевые лампы, по форме похожие на люминесцентные. Колба выполнена из кварцевого стекла, откуда и название лампы. В спектре кварцевой лампы присутствует составляющая с длиной волны 254 нм, которая разрушает ДНК бактерий и вирусов. Также есть излучение с длиной волны 185 нм, под действием которого кислород воздуха преобразуется в озон. В строго дозированных количествах озон также способен уничтожать болезнетворные микроорганизмы. Но именно выработка озона стала причиной, почему сейчас кварцевые лампы применяются только для проведения медицинских процедур в индивидуальном порядке. Желательно под присмотром персонала с медицинским образованием. Всемирная организация здравоохранения не рекомендует использовать кварцевые лампы для борьбы с коронавирусом из-за негативного воздействия составляющей в 185 нм на кожу человека.

Бактерицидная лампа по конструкции аналогична люминесцентной лампе, но без люминофора, а колба выполнена из специального сорта стекла, пропускающего излучение с длиной волны 254 нм и задерживающего составляющую 185 нм. С такими лампами могут работать люди, не имеющие медицинского образования, например, сотрудники клининговых компаний. Именно бактерицидные лампы сейчас широко используются для обеззараживания. Как правило, обеззараживание производится в помещении, где в данный момент нет людей. Но при соблюдении определенных условий и установке лампы специалистом возможно ограниченное применение бактерицидных ламп и в помещениях с людьми.

Общее описание ртутных приборов

Ртутьсодержащие газоразрядные лампочки – это специфический источник света, в котором разряд газа генерирует оптическое излучение в парах ртути. В технической номенклатуре эта разновидность носит название разрядной лампы (РЛ).

Наличие токсичного вещества существенно снижает привлекательность изделий. Однако, полностью от них еще не отказались и считать ртутные приборы устаревшими пока рано.

Магистральное освещение ртутными лампамиРтутные устройства высокого давления отлично справляются с задачей освещения больших крытых и открытых пространств. Интенсивность их свечения при равной мощности почти в 10 раз превышает результаты стандартных ламп накаливания

Как увеличить освещенность

Подыскивая место для светильника, помните о важном правиле: освещенность сильно уменьшается с расстоянием. Увеличив дистанцию между лампой и растением в два раза, мы дадим ему лишь четверть от первоначального количества света

Освещение максимально эффективно, если лучи падают на освещаемый объект перпендикулярно поверхности. Поскольку листья большинства комнатных цветов располагаются горизонтально, источник должен светить по возможности строго сверху вниз.

Существует способ значительно увеличить освещенность поверхности, сохраняя все параметры источника света. Использование отражателя (рефлектора) позволяет усилить светоотдачу до 50%. Принцип действия этого устройства заключается в отражении уходящего вверх и вбок света лампы вниз к растениям. Точечные источники света (лампы накаливания, энергосберегающие и газоразрядные) чаще всего снабжают рефлектором конической или эллиптической формы,а люминесцентные трубки – П-образным. Лучше всего отражают свет белые матовые поверхности, а не зеркала, как мы привыкли считать.

Часто рефлекторами снабжают светильники, в которые устанавливают источник света. У галогенных ламп накаливания и газоразрядных ламп высокого давления отражатели могут содержаться в самой колбе. Простенький рефлектор можно изготовить самостоятельно из фольги и жести. Но помните, что он должен быть пожаробезопасным и предусматривать отвод тепла от лампы.

Завершить создание домашней системы искусственного света можно с помощью электрических таймеров, исполненных в виде переходника: устройство включают в розетку, а уже к нему подсоединяют шнур лампы. Таймер с механическим программатором намного дешевле электронного, но не так удобен в обращении. Микрокомпьютер последнего позволяет запрограммировать включение/выключение лампы с точностью до минуты на неделю или месяц вперед, причем можно установить различный режим освещения в разные дни.

При выборе источника света обратите внимание на тип и электрическую мощность лампы – они определяют интенсивность свечения

Очень важно и цветовое богатство спектра: для успешного роста и цветения растениям нужны красные и синие составляющие солнечного света. Человеческий же глаз приспособлен к восприятию желтых и зеленых лучей

Яркая, с нашей точки зрения, лампа вполне может оказаться тусклой для комнатного цветка или рассады

Человеческий же глаз приспособлен к восприятию желтых и зеленых лучей. Яркая, с нашей точки зрения, лампа вполне может оказаться тусклой для комнатного цветка или рассады.

Характеристики освещения представлены в таблице ниже (кликнуть для просмотра в новом окне в большом размере)

Достоинства и недостатки ртутных ламп

Некоторые специалисты называют ртутные источники света технически устаревшими и рекомендуют сокращать их использование не только в бытовых, но и в промышленных целях.

Однако, такое мнение несколько преждевременно и газоразрядные лампы еще рано списывать со счетов. Ведь есть места, где они проявляют себя на высшем уровне и обеспечивают яркий, качественный свет при разумном потреблении.

Плюсы газоразрядных модулей

У ртутьсодержащих источников света специфические положительные качества, которые довольно редко встречаются у прочих ламповых изделий.

Среди них такие позиции, как:

  • высокая и эффективная светоотдачана протяжении всего эксплуатационного периода – от 30 до 60 Лм на 1 Ватт;
  • широкая линейка мощностейна классических видах цоколей E27/E40 – от 50 Вт до 1000 Вт в зависимости от модели;
  • пролонгированный срок службыв обширном температурном диапазоне окружающей среды – до 12 000-20 000 ч;
  • хорошая морозостойкостьи корректная работа даже при низких показателях термометра;
  • возможность использовать источники света без подключения ПРА– актуально для вольфрамово-ртутных устройств;
  • компактные размерыи хорошая прочность корпуса.

Максимальную отдачу приборы высокого давления демонстрируют в системах уличного освещения. Отлично проявляют себя в рамках подсветки крупногабаритных крытых помещений и открытых площадок.

Минусы ртутьсодержащих изделий

Как и у всякого другого технического элемента, у ртутных газоразрядных модулей имеются некоторые недостатки. Этот перечень содержит всего несколько позиций, которые обязательно нужно учитывать при организации осветительной системы.

Первый минус – это слабый уровень цветопередачи Ra, в среднем не превышающий 45-55 единиц. Для освещения жилых помещений и офисов этого мало.

Поэтому в местах предъявления повышенных требований к спектральному составу светопотока ртутные лампы монтировать нецелесообразно.

Уличное освещение ртутными лампамиРтутные приборы не способны передать в полном объеме оттеночную гамму цветового спектра человеческих лиц, интерьерных элементов, мебели и прочих мелких предметов. Зато на улице этот недостаток практически незаметен

Низкий порог готовности к включению тоже не прибавляет привлекательности. Чтобы войти в режим полноценного свечения, лампа обязательно должна разогреться до нужного уровня.

Обычно на это уходит от 2 до 10 минут. В рамках уличной, цеховой, промышленной или технической электросистемы это большого значения не имеет, но в домашних условиях оборачивается существенным недостатком.

Если в момент функционирования прогретая лампа вдруг отключается по причине падения напряжения в сети или из-за других обстоятельств, включить ее сразу не представляется возможным. Сначала прибор должен полностью остыть и только потом его получится снова активировать.

Возможность регулировки яркости подаваемого света у изделий отсутствует. Для их корректной работы обязательно требуется определенный режим подачи электрики. Все происходящие в нем отклонения негативно сказываются на источнике света и в разы снижают его рабочий ресурс.

Освещение ртутными лампами на производствеПроблемный момент функционирования ртутьсодержащих элементов – режим базового старта и последующего выхода на номинальные параметры работы. Именно в это время прибор получает максимальную нагрузку. Чем меньше активаций испытывает лампочка, тем дольше и надежнее она служит

Переменный ток действует на газоразрядные осветительные приборы крайне негативно и в итоге приводит к возникновению мерцания с сетевой частотой в 50 Гц. Устраняют этот неприятный эффект с помощью электронных ПРА, а это влечет за собой дополнительные материальные расходы.

Сборка и установка ламп должны происходить строго по схеме, разработанной квалифицированными специалистами. При монтаже необходимо использовать только качественные термопрочные комплектующие, устойчивые к серьезным эксплуатационным нагрузкам.

В процессе использования ртутных модулей в жилых и рабочих помещениях колбу желательно закрывать специальным защитным стеклом. Во момент неожиданного взрыва лампы или короткого замыкания это обезопасит людей, находящихся рядом, от травм, ожогов и других повреждений.

Инфракрасные лампы для животных.

Ученые доказали, что инфракрасное излучение способствует повышению аппетита и усвояемости кормов у поросят, телят, жеребят, молодняка птицы и породистых собак. В результате прирост веса молодняка в единицу времени существенно увеличивается. Организм животных лучше сопротивляется болезням. Более того, поскольку инфракрасное излучение – это живое тепло, работа инфракрасных ламп прогревает помещение и высушивает сено. Поэтому повышается гигиена и чистота в местах содержания скота, уменьшаются потери в зимний период, когда молодняк особенно страдает от недостатка тепла, скучивается и наносит друг другу увечья.

СПЕКТРАЛЬНЫЕ ОБЛАСТИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

В соответствии с длинами волн (l

) весь спектр электромагнитного излучения условно делится на ряд частично перекрывающихся областей – от радиоволн на его длинноволновой границе до гамма-лучей на границе коротких волн. Однако такое деление отражает зависимость не только отl, но и от способов генерации и обнаружения соответствующего электромагнитного излучения. Например, нет никакого принципиального различия между микроволновым и инфракрасным излучением одинаковых длин волн, но если излучение генерируется электронным прибором, его называют микроволновым, а если оно испускается инфракрасным источником – инфракрасным.

С этим читают

  • Cветодиодные лампы: теплый свет или холодный, чем отличаются
  • Светодиодные трубчатые лампы на 9 и 18 вт длиной 600 и 1200 мм
  • Сравнительный анализ светодиодных и ламп накаливания
  • Люминесцентные лампы: параметры, устройство, схема, плюсы и минусы по сравнению с другими
  • Организация правильного освещения в теплице: схемы размещения светильников и практические советы как установить оптимальное освещение для теплиц (95 фото)
  • Единица измерения освещенности
  • Светодиодная фитолампа своими руками для рассады
  • Белые пятна лампы накаливания
  • Как поменять лампочку в подвесном потолке?
  • Лампа накаливания

В чем опасность для человека?

Нарушение целостности колбы представляет большую проблему, потому что ртуть, попадая в атмосферу, вредит всему вокруг.

Вышедшее из строя изделие не подлежит хранению в домашних условиях и не подходит для выброса в обычный мусорный контейнер.

Контейнер для утилизации токсичных лампВ северных округах России запущен экологический проект «Утилизируй правильно». В рамках этого мероприятия на улицах городов расставлены специальные контейнеры, куда население может складывать отработавшие свой ресурс ртутные и люминесцентные лампочки

Изделие подлежит правильной утилизации в соответствии с принятыми нормативами. Делать это могут только организации, имеющие специальную лицензию.

В их обязанности входит прием ламп от населения, транспортировка, хранение их на складе, оборудованном герметичными боксами, и последующая утилизация.

Процесс переработки осуществляется такими способами, как:

  • амальгамирование;
  • демеркуризация;
  • термообработка;
  • высокотемпературный обжиг;
  • технология на вибропневматике.

Наиболее уместный вариант уничтожения выбирает утилизатор. Все дальнейшие действия проводятся строго по инструкции, регламентирующей процесс.

Прием ртутных ламп на утилизациюВ небольших городах России программа утилизации организована несколько по-другому. Там раз в месяц в определенные места выезжает спецтранспорт, и работники уполномоченных предприятий принимают у населения отработанные источники света с токсичным наполнением

В начале осени 2014 года РФ поставила подпись под международным документом – Минаматской конвенции о ртути. Согласно содержащейся там информации с 2021 года все ртутьсодержащие продукты будут запрещены к производству, импорту и экспорту.

Среди источников освещения под это положение подпадают паросветные ртутные лампы высокого давления, в частности, модули с маркировкой ДРИ и ДРЛ.

Добавить комментарий