Инфо-baza
836 0

Проводники и диэлектрики в электростатическом поле

Что такое проводники и диэлектрики

Проводники это вещества, имеющие в своей структуре массу свободных электрических зарядов, способных перемещаться под воздействием внешней силы по всему объёму материала.

К группе проводников в электростатическом поле относят металлы и их соединения, некоторые виды электротехнического угля, растворы солей (кислот, щелочей), ионизированные газы.

Лучшим проводящим материалом считается металл, например, золото, платина, медь, алюминий. К неметаллическим веществам, проводящим ток, относится углерод.

Проводник

Диэлектрики – вещества, противоположные по своим свойствам проводникам. При отсутствии нагревания заряженные частицы в нейтральном атоме тесно взаимосвязаны и не могут осуществлять движения в объеме материала. В связи с этим электрический ток в непроводнике протекать не может.

Читайте также: PWM или ШИМ (широтно импульсная модуляция) на AVR для новичков. Часть 1

Диэлектрик

К материалам, непроводящим электрический ток, относят: керамику, резину, бумагу, стекло, фарфор, смолу, сухую древесину. Лучшим диэлектриком считается газ. Качества диэлектриков зависят от температуры и влажности среды, в которой они находятся.

Важно!При повышении влажности диэлектрики могут лишиться непроводящих способностей.

Проводники и диэлектрики активно используют в электротехнической области. Пример – материалом, из которого производят провода (кабели), служат проводники, изготовленные из металла. Изолирующие оболочки для них производят из диэлектриков – полимеров.

Свойства материалов

Лучшими считаются проводники, сырьем для производства которых послужило серебро, золото или платина. Повсеместное их использование ограничивается только большой стоимостью материала. Такие изделия нашли применение в оборонной и космической промышленности. В этих сферах важно обеспечение самого высокого качества оборудования, независимо от его стоимости.

Гораздо шире область применения медных и алюминиевых материалов. Невысокая стоимость и отличные проводящие качества позволили использовать их во многих отраслях хозяйствования.

В диэлектриках повышение температуры может приводить к возникновению свободных электрических зарядов. Это электроны, оторвавшиеся от ядра из-за температурных колебаний. Обычно это небольшое количество свободных зарядов. Но существуют изоляторы, в которых это число достигает существенных размеров. В этом случае изоляционные качества диэлектрика ухудшаются.

Обратите внимание!Надежным считается диэлектрик, если возникающий в нём небольшой ток утечки не мешает работе всей системы.

Лучшим диэлектриком считается абсолютный вакуум, а также полностью очищенная вода. Но таковых в природе не найти, а создать их искусственным путём очень сложно. Включение в жидкость любой примеси обеспечивает ей проводящие качества.

Три опыта для демонстрации проводимости различных веществ

Рассмотрим три опыта, которые продемонстрируют нам то, как различные вещества могут по-разному пропускать электрические заряды.

Первый эксперимент

Возьмём два электрометра. Один из них зарядим, а второй, наоборот, разрядим. Разрядить электрометр с небольшим зарядом просто – достаточно прикоснуться к нему рукой: наша кожа является неплохим проводником, поэтому заряд с шара электрометра перейдёт к нам. Однако будьте ОСТОРОЖНЫ! Благодаря тому, что кожа является хорошим проводником, человек подвержен опасности при контакте с носителями большого электрического заряда.

Теперь возьмём провод на изолированной пластмассовой ручке (изолирует руку от металлической проволоки) – и прикоснёмся к шарам этих электрометров. При этом стрелка второго электрометра практически моментально отклонится от вертикального положения

Читайте также: Термопары К типа: описание и принципы работы датчиков

Обратим внимание на то, как быстро произошло протекание заряда от одного электрометра к другому. Это говорит о том, что металлы – очень хорошие проводники

Необходимо отметить тот факт, что металлы тоже обладают разной проводимостью. Наиболее хорошо проводят электрические заряды такие металлы, как серебро, медь и алюминий.

Второй эксперимент

Сообщим дополнительный заряд первому электрометру и разрядим второй электрометр.

Теперь возьмём деревянную линейку и положим её на два электрометра. Что при этом произойдёт? Для чистоты эксперимента изолируем линейку от руки с помощью, к примеру, листа бумаги.

Мы видим, что стрелка второго электрометра отклоняется не так резко, как в первом эксперименте, а постепенно. Это означает, что электрические заряды по дереву тоже проходят, то есть дерево можно считать проводником. Но, естественно, его свойства проводимости отличаются от свойств металлов. Следовательно, можно говорить о том, что такие вещества, как дерево и металл, существенно отличаются своей проводимостью.

Третий эксперимент

В третьем эксперименте мы пронаблюдаем за тем, как ведут себя диэлектрики.

Для этого повторим эксперимент следующим образом: разрядим второй электрометр и сообщим дополнительный заряд первому электрометру.

Затем возьмём стеклянную палочку и потрём её о бумагу. В результате взаимодействия происходит разделение электрического заряда, то есть электризация. При этом само стекло не является проводником, то есть стекло плохо пропускает электрический заряд. Теперь приложим палочку к обоим электрометрам.

В данном случае мы наблюдаем следующее: после прикосновения палочки к шарам электрометров совершенно ничего не происходит. То есть второй электрометр остаётся незаряженным. Это означает, что стекло у нас не пропускает электрические заряды.

Немаловажным является тот факт, что важное значение для проводимости некоторых веществ имеет состояние окружающей среды. Например, если повышается влажность воздуха (о которой мы говорили в предыдущей теме), то в этом случае многие вещества будут вести себя, как проводники

Наглядной демонстрацией этого может служить молния. Ведь молния обычно наблюдается тогда, когда идёт дождь, то есть влажность максимальна. Соответственно, во влажном воздухе начинает проходить электрический заряд, то есть электрический заряд идёт по воздуху (газу). Хотя в обычной ситуации воздух не проводит электрический заряд. То есть воздух становится проводником именно в том случае, когда изменилась влажность. Можно и привести и другие примеры, подтверждающие влияние влажности на проводимость материалов.

На следующем уроке мы познакомимся с вопросами, связанными с зарядами: какие заряды существуют и существует ли минимальный электрический заряд.

Список литературы

Читайте также: Как правильно переводить Гкал/ч в кВт и обратно
  1. Генденштейн Л. Э, Кайдалов А. Б., Кожевников В. Б. Физика 8 / Под ред. Орлова В. А., Ройзена И. И. – М.: Мнемозина.
  2. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  3. Фадеева А. А., Засов А. В., Киселев Д. Ф. Физика 8. – М.: Просвещение.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Фестиваль педагогических идей «открытый урок» (Источник).
  2. Интернет-портал Works.tarefer.ru (Источник).
  3. Уроки (Источник).

Домашнее задание

  1. П. 27, вопросы 1–4. Перышкин А. В. Физика 8. – М.: Дрофа, 2010.
  2. Каким свойством должны обладать нити, на которых подвешиваются заряженные тела при экспериментах по электричеству?
  3. Почему стрелка электроскопа отклоняется, когда электроскоп заряжают? Зависит ли отклонение от знака заряда?
  4. Как можно опытным путём отличить проводник от диэлектрика?

Свойства проводников

Удельное сопротивление

Основными характеристиками проводников электричества являются:

  1. сопротивление,
  2. электропроводность.

При движении электронов по проводящему веществу происходят их столкновения с ионами и атомами. Это приводит к возникновению сопротивления.

Если между двумя проводниками создать разность потенциалов, то через третий, их соединяющий, потечет электрический ток. Направление его движения будет от большего потенциала к меньшему. В этом случае носителями будут электроны, не связанные между собой, которые определяют значение электропроводимости вещества.

Электропроводность – возможность материала пропускать электрический ток. Этот показатель обратно пропорционален сопротивлению материала, измеряется в сименсах, См.

В зависимости от носителей заряда, электропроводность может быть:

  • электронной,
  • ионной,
  • дырочной.

Проводник с электронной проводимостью

Обратите внимание!Надежный проводник характеризуется малым сопротивлением потоку движущихся электронов и, соответственно, высокой электропроводностью. Наибольшая проводимость – свойство наилучшего проводника.

Выбор проводящих материалов должен осуществляться в соответствии с их свойствами:

  • Электрическими (удельное сопротивление и температурный коэффициент сопротивления);
  • Физическими (градус плавления, плотность);
  • Механическими (устойчивость к растяжению, изгибанию, возможность обработки на станках);
  • Химическими (взаимодействие с окружающей средой, возможность соединения при сварке, пайке).

Малым удельным сопротивлением обладают металлы без примесей. У сплавов этот показатель увеличивается. Сопротивление возрастает и с повышением температуры.

Важно!При охлаждении до критических значений сопротивление большинства токопроводящих веществ падает до нуля. Это свойство носит название сверхпроводимости.

При выборе проводников для электроустановок, линий питания, защитного заземления и других сфер применения важно учитывать все качества материалов.

Зависимость сопротивления проводника от частоты тока

При воздействии электрического тока индукция магнитного поля происходит внутри прямолинейного проводника и в окружающем его пространстве. Магнитные линии образуют концентрические окружности.

Распределение переменного тока по сечению

Как рассчитать амперы

Если проводник с током условно разбить на несколько параллельных друг другу нитей тока, то можно установить, что, чем ближе токовая нить находится к оси проводника, тем больший замыкающийся внутри магнитный поток её охватывает. Индуктивность нити и индуктивное сопротивление находятся в пропорциональной зависимости от магнитного потока, с нею связанного.

В связи с этим в нитях с переменным током, находящихся внутри проводящего вещества, возникает большее индуктивное сопротивление, чем в нитях, находящихся снаружи. Образуется неравномерность тока по сечению, возрастающая от оси к поверхности проводника, чем и объясняется увеличение сопротивления проводников переменному току. Это явление называется поверхностным эффектом.

Из-за неравномерного распределения плотности тока происходит увеличение сопротивления проводника. При небольшой частоте в 50 Гц и малом сечении медного провода явление поверхностного эффекта почти незаметно. При значительном увеличении частоты и сечения проводника из железа это явление будет более активным.

Обратите внимание!Чем выше частота тока в цепи, тем ближе к поверхности проводника находятся электрические заряды, и тем больше возрастает его сопротивление.

Электричество и магнетизм

Электричество известно с давних времён, но иных сведений, кроме признания существования, о явлении не приводилось. Узнали лишь, что статический заряд удаётся получить трением, и дело застопорилось. Сложно сказать, что открыто раньше, но геологи считают, что магнетизм известен людям по крайней мере с V века до нашей эры. Находки указывают, что намагниченные куски породы использовались в неизвестных целях на территории современной Турции.

Известно, что систематизация данных по магнетизму началась раньше. Первопроходцем стал известный ныне, благодаря единственному документу, Перегрин. В 1269 году он написал манускрипт, где описал и систематизировал данные по магнитам, предложил методику ориентации для путешественников в пространстве. С латинского «перегринус», «пилигрим» – путешественник. Уже в первые века нашей эры свойство магнита активно эксплуатировалось китайскими мореходами. Перегрин вскрывал ряд свойств:

  1. Магнит всегда располагается по направлению с севера на юг. Следовательно, обнаруживает два полюса. Одноименные отталкиваются, а разноимённые притягиваются.
  2. Если магнит разломить пополам, получается два совершенно отдельных куска, обладающие в полной мере свойствами первоначального. Получить полюс по отдельности простыми средствами не получится.

Что касается электричества, физики отдают несомненный приоритет Гильберту. Этот человек создал трактат, где собрал и систематизировал имеющиеся данные, много экспериментировал самостоятельно. Гильберт, по странному совпадению занялся сравнением магнетизма и электричества. К 1600 году никто не задумывался о связи материй и ничего не мог доказать. Гильберт установил, что электричество – в его понимании – считается слабой субстанцией: заряд легко смывается водой, экранируется и характеризуется малой силой взаимодействия

Читайте также: ГОСТ Р 50571.1-93 Электроустановки зданий. Основные положения

Для теории и будущих поколений сделал важное наблюдение:

  • Магнитный шар из руды – Гильберт назвал его Тереллой – ведёт себя подобно Земному в смысле действия на стрелку компаса.
  • Электрическое взаимодействие распространяется по прямой. Следовательно, Гильберт оказался первым, кто правильно охарактеризовал силовые линии поля.

Два века понадобилось человечеству, чтобы подобный эффект обнаружить в проводе с током. Сказанное приводит к выводу, что исследования тормозились, вдобавок к инквизиции, отсутствием генератора электричества – не с чем проводить эксперименты. Тереть янтарь шерстью утомительно и малоэффективно. Иллюстрации Гильберта (см. рис.) подтолкнули исследователей к изучению структуры силовых линий, что в будущем помогло объяснить поведение диэлектриков и проводников в магнитном поле.

Гильберту приписывают первую систематизации материалов. Он искал вещества, демонстрирующие способности к электризации, составил списки отличающихся. В последний класс попало большинство металлов, в первый – диэлектрики. Сегодня установлено, что статический заряд распределить возможно практически на любом теле. Но трением приобретают необычные свойства преимущественно диэлектрики. Таким образом, Гильберт первым систематизировал материалы, хотя на момент 1600 года не смог дать удовлетворительные объяснения.

Считается, что первый электростатический генератор изобрёл Отто фон Герике. Серный шар, вращающийся на железной оси, натирали ладонями, наблюдая искры электрического разряда. Герике обнаружил перераспределение статического электричества по поверхности различных тел. На основе созданного генератора стали ставить опыты, к середине XVIII века материалы оказались поделены на классы (проводники и диэлектрики) и по знаку получаемого трением заряда. Появилось смоляное (отрицательное) и стеклянное (положительное) электричество.

Дальнейшие эксперименты позволили при помощи крутильных весов (на тонкой нити) установить закон притяжения и отталкивания между зарядами. Это сделал Шарль Кулон. Он описал количественно силу взаимодействия, подтвердив предположение Гильберта о линейности силовых линий электрических зарядов. На это ушло без малого два века. Закон Кулона позволил учёным дать первые объяснения касательно поведения диэлектриков и проводников в электрическом поле. Уже тогда присутствовало любопытное приспособление, способное удивить и скептика…

Формула определения длины проводника

Ампер — что это такое

Найти длину проводника можно путём непосредственного его измерения, например, рулеткой. Если предстоит подсчитать протяженность скрытой электропроводки в жилище, нужно учесть, что прокладывают её обычно горизонтально по стенам на расстоянии 15-20 см от потолка. Вертикально, под прямым углом, делают опуски на выключатели и розетки. Если проводник труднодоступен (заземляющие проводники), либо длина его велика, этот метод может оказаться сложно выполнимым.

Тогда длина проводника определяется другим способом.Для этого необходимо подготовить:

  • строительную рулетку,
  • тестер,
  • штангенциркуль,
  • таблицу электропроводности металлов.

Сначала нужно измерить сопротивление отдельных участков электропроводки. Далее определить сечение провода и материал, из которого он изготовлен. Обычно в быту используются алюминиевые или медные проводящие материалы.

Из формулы определения сопротивления(R = r * L * s)находят длину проводника по формуле:

L = R / r*s,

где:

  • L – длина провода,
  • R – его сопротивление,
  • r – удельное сопротивление материала (для меди составляет от 0,0154 до 0,0174 Ом, для алюминия – от 0,0262 до 0,0278 Ом),
  • s – площадь поперечного сечения провода.

Рассчитывают сечение провода:

S = π/4 * D2,

где:

  • π – число, приблизительно равное 3,14;
  • D – диаметр, замеряемый штангенциркулем.

Если необходимо найти длину провода, смотанного в бухту, определяют длину одного витка в метрах и умножают на число витков.

Если катушка круглого сечения, измеряют её диаметр, умножают на числоπ и на количество витков:

L = d *π* n,

где:

  • d – диаметр катушки,
  • n – число витков провода.

Виды проводников

Состояние проводящих электрический ток материалов может быть твердым, жидким, газообразным.

Твёрдые – это группы металлов, их сплавов и некоторые модификации углерода. Металлы хорошо проводят тепло, электроэнергию.

Жидкие – это расплавленные металлы и электролиты. При невысокой температуре жидким проводником может быть ртуть или галлий. Температура плавления остальных элементов слишком высока.

Течение тока по металлу, имеющему твёрдое или жидкое состояние, происходит посредством движения свободных электронов. Благодаря этому, его электропроводность получила название электронной, а само вещество называют проводником первого рода.

Проводник второго рода (электролит) – это кислотный, щелочной, солевой раствор и расплав ионных соединений. В нём одновременно с движением тока переносятся молекулы (ионы), поэтому со временем структура электролита меняется, а на электродах осаживается продукт электролиза.

В электрическом поле низкой напряженности любой газ и пар не проводят ток. Но в случае достижения напряженностью максимальной критической отметки, когда начинаются ударная и фото-ионизация, газ может стать проводником с электронной и ионной электропроводностью. Когда на единицу объема будет приходиться одинаковое число электронов и положительных ионов, газ с сильной ионизацией станет уравновешенной, электропроводящей субстанцией, именуемой плазмой.

Поведение проводника в электрическом поле

Деление на проводники, полупроводники и диэлектрики условное. Нет чёткой границы, градация ведётся по удельной проводимости веществ. Проводники хорошо проводят ток, диэлектрики практически лишены указанного качества.

Рассмотрим случай однородного поля с прямыми и параллельными друг другу силовыми линиями, как в большинстве учебников физики. Помещённый в постоянное поле металл начинает заряжаться статическим электричеством, как описано выше. Смысл: линии напряжённости идут в направлении, куда двигался бы положительный заряд – так решил Франклин. Но электроны отрицательны, плывут против течения.

В результате на образце проводника со стороны истока поля скапливается избыток носителей со знаком минус. А противоположный конец металла положителен. Процесс происходит так:

  1. Поле проникает внутрь металла.
  2. Проводник полон свободных носителей заряда, двигающихся вдоль силовых линий.
  3. Процесс перераспределения идёт, пока собственное поле электронов и свободных орбит атомов не уравновесит внешнее воздействие.
  4. На этом влияние постоянного электрического поля исчерпывается.

Свойства диэлектриков

Выбор диэлектриков должен осуществляться в соответствии с их свойствами:

  1. Электрическими: пробивное напряжение (при котором наступает пробой), электрическая прочность (напряженность поля, при которой наступает пробой);
  2. Физико-химическими: стойкость к нагреванию (способность длительно выдерживать рабочую температуру), холодостойкость (способность переносить перепады температур), смачиваемость (способность отторгать влагу);
  3. Химическими: устойчивость к агрессивной среде, растворимость в лаках, возможность склеивания;
  4. Механическими: радиационная устойчивость, вязкость (для жидких диэлектриков), защищенность от коррозии, предел прочности, возможность инструментальной обработки.

Что такое полупроводник

Полупроводник по обозначению – вещество, электрическая проводимость которого меньше, чем у металла, и больше, чем у диэлектрика.

Полупроводники

Отличие полупроводника в том, что его электропроводность зависит от температурного режима и объема примесей в составе. Материал обладает характеристиками, как проводящими, так и диэлектрическими.

При увеличении температуры электропроводность вещества растёт, а уровень сопротивления падает. При уменьшении температуры сопротивление стремится к бесконечности.

Обратите внимание!При достижении температурой нулевой отметки полупроводник ведет себя как изолятор.

Благодаря своим уникальным свойствам, полупроводники применяются во многих отраслях промышленности: это и маломощные SMD на печатных платах, и устройства высокой мощности, например, тиристоры в силовой преобразовательной технике.

Демонстрация работы электрометра

Как же устроен электрометр? Практически так же, как и электроскоп.

В верхней части электроскопа располагается шар (специально делается таким образом, чтобы можно было на нём разместить как можно большее количество зарядов). Металлический стержень проходит через пластмассовую пробку внутри металлического корпуса, который с двух сторон защищён стёклами. В нижней части стержня укреплена стрелка.

Стрелка, получая заряд от металлического стержня, знак которого совпадает с зарядом стержня, отталкивается, и по отклонению этой стрелки от вертикали можно судить о величине электрического заряда. Как видно на рисунке, в электрометре есть некая шкала, которая позволяет по углу отклонения стрелки судить о величине электрического заряда.

Рассмотрим действие электрометра.

Читайте также: Как правильно выбрать аккумулятор для легкового автомобиля

Возьмём стеклянную палочку, потрём её о бумагу, чтобы в результате трения она стала наэлектризованной. Поднесём теперь палочку к шару электрометра, в результате заряд палочки передаётся шару электрометра, от которого получает заряд металлический стержень и стрелка электрометра. Поскольку стержень и стрелка обладают одноимённым зарядом, то стрелка отклоняется от стержня, тем самым демонстрируя нам наличие электрического заряда (Рис. 6).

Рис. 6. Принцип работы электрометра (Источник)

Итак, мы рассмотрели устройство электрометра и электроскопа – простейшие приборы, которые можно использовать для регистрации и оценки величины электрического заряда

Обратите внимание, что по отклонению стрелки можно судить о величине электрического заряда. Грубо говоря, электрометр – это электроскоп со шкалой

Именно благодаря этому усовершенствованию Ломоносов и использовал электрометр для изучения электрических явлений.

Зонная теория

Зонная теория твердых тел – это теория перемещения валентных электронов в потенциальном поле кристаллической решетки. Квантовая механика полагает, что свободные электроны могут обладать любой энергией, спектр которой непрерывен.

Электроны изолированных атомов имеют некоторую дискретную величину энергии. При объединении отдельных атомов в молекулы и образовании вещества происходит смещение электронных уровней атома. Таким образом, из энергетических уровней отдельных атомов в твёрдом теле образуются полосы зон энергетических уровней.

Верхняя заполненная зона, валентная, соответствует энергетическому уровню валентных электронов внешней оболочки. Ближайшая к ней, незаполненная, – зона проводимости. Взаимным расположением обеих зон определяются процессы, происходящие в твердом теле, и классифицируются материалы по группам: проводники, полупроводники, диэлектрики.

Зонная классификация

В проводниках зона проводимости и валентная зона совмещены. Образовавшаяся зона перекрытия позволяет электрону свободно перемещаться при получении даже небольшой энергии.

В полупроводниках зоны не перекрываются. Расстояние между ними, называемое запрещенной зоной, – менее 2.0 эВ. При нулевой температуре в зоне проводимости отсутствуют электроны, а валентная зона ими заполнена. При возрастании температуры часть электронов забрасывается в зону проводимости за счет теплового движения. Полупроводник становится электропроводящим.

В диэлектриках зоны так же, как и у полупроводников, не перекрываются. Величина запрещенной зоны здесь – более 2.0 эВ. Для того чтобы перевести электроны из зоны валентности в зону проводимости, необходимо значительно повысить температуру. При невысоких градусах электрический ток не проводится.

Особенности поведения заряда

Заряд проводника скапливается на поверхности. Кроме того, он распределяется таким образом, что плотность заряда ориентируется на кривизну поверхности. Здесь она будет больше, чем в других местах.

Проводники и полупроводники имеют кривизну больше всего на остриях угла, кромках и закруглениях. Здесь же наблюдается и большая плотность заряда. Наряду с ее увеличением растет и напряженность рядом. Поэтому здесь создается сильное электрическое поле. Появляется коронный заряд, из-за чего стекаются заряды от проводника.

Если рассмотреть проводник в электростатическом поле, у которого изъята внутренняя часть, обнаружится полость. От этого ничего не изменится, потому что поля как не было, так и не будет. Ведь в полости оно отсутствует по определению.

Сверхпроводимость

Свойство материала обладать нулевым электрическим сопротивлением при температуре ниже определенного значения получило название сверхпроводимости.

У некоторых проводящих веществ эта способность возникает при холодной температуре, близкой к химическому состоянию жидкого гелия.

В 1986 году произошло открытие веществ с высокотемпературной сверхпроводимостью. Например, керамика из кислорода, бария, меди, лантана не проводит ток в обычных условиях, а вследствие нагревания становится сверхпроводником.

На практике используют вещества, пропускающие электрический ток при 58 градусах Кельвина и более, то есть при температуре выше точки кипения азота.

Чаще всего находят применение твердые высокотемпературные сверхпроводники. Жидкие и газообразные используют реже. Все эти материалы необходимы для изготовления современных электротехнических устройств различной мощности.

Добавить комментарий