Новости
316 0

Приставка для измерения малых сопротивлений мультиметром. Схема

Приставка милиомметр

Схема приставки для измерения малых сопротивленийСхема приставки для измерения малых сопротивленийЭта простая схема из одного зарубежного сайта, предназначается для измерения низких значений сопротивления — от 0,001 до 1.999 ом. «Прямой Индикация Сопротивления, Ом». Вы должны использовать отдельный аккумулятор для её питания. Напряжение питания стабилизировано микросхемой LM317LZ. Рекомендуем именно малогабаритнуюLM317LZ, а неLM317. Но вы можете также использовать и LM317, если хотите. Подстроечный резистор должен быть настроен точно на ток 100 мА, чтобы получить высокую точность измерения сопротивления.

Плата печатная приставки для измерения малых сопротивлений

При измерении старайтесь максимально уменьшить длину проводов, так как каждый сантиметр будет давать дополнительное сопротивление.

Читайте также: Как сделать электрический теплый пол в деревянном доме – предостережения и рекомендации

На дисплей цифрового вольтметра (обычного мультиметра D830) будет выведено значение в Омах, от 0,001 до 1.999 Ом. Для испытаний прибора померяйте несколько параллельно соединённых одноомных резистора.

Корпус

Чтобы прибор имел презентабельный вид, для него был разработан алюминиевый корпус. Необходимые файлы проекта (Inkscape), шаблоны и трафареты также доступны в разделе загрузок.

На передней панели прибора расположены кнопки управления (выбор диапазона измерения, удержание показаний), разъемы для подключения тестовых щупов и ЖК-индикатор. Внешний вид передней панели прибора и расположение на ней кнопок, разъемов и индикатора изображено на Рисунке 6.

Рисунок 6.Вариант передней панели и корпуса миллиомметра.

Подключение ЖК-индикатора, разъемов и кнопок указано на Рисунке 7. На рисунке отмечено: 1 – печатная плата прибора, 2 – разъем внешнего питания, 3 – ЖК-индикатор, 4 –разъемы для тестовых щупов Кельвина, 5 –кнопки управления.

Рисунок 7.Подключение кнопок управления, ЖК индикатора, тестовых щупов к разъемам на печатной плате миллиомметра.

Аналоговый измеритель малых сопротивлений

Можно собрать не просто приставку, а готовый самостоятельный прибор. В этом аналоговом милиомметре используется два режима измерения сопротивления. При стабильном токе в 1А (шкала 1 деление = 0,002 Ом) и при стабильном токе 0,1А (шкала 1 деление = 0,02 Ом). Это для головки показанной на фото 1. Как видно из фото, измерительная головка имеет ток полного отклонения 100 мкА. Цена маленького деления — 2 мкА. При токе в 0,1А прибор будет измерять сопротивление с 0,02 Ома до 1-го Ома. Т.е. отклонение стрелки на последнее деление шкалы будет соответствовать одному Ому.

Принципиальная схема милиомметра

Принцип работы прибора заключается в измерении падения напряжения на измеряемом сопротивлении при прохождении через него определенного стабильного тока. Сопротивление рамки у стрелочного измерительного прибора равно 1200 Ом, ток полного отклонения — 0,0001 А, значит, если мы будем использовать этот индикатор в качестве вольтметра, потребуется подать на нее напряжение величинойU = IхR = 0,0001х1200 = 0,12 В = 120 мВдля отклонения стрелки на последнее деление шкалы. Именно такое напряжение должно упасть на сопротивлении в 1 Ом на пределе измерения прибора от 0,02 Ома до 1 Ома. Значит на данном пределе измерения нам надо пропустить через измеряемый резистор стабильный ток величинойI = U/R = 0,12/1 = 0,12A = 120 мА. Тоже самое можно рассчитать и для другого предела.

Форум по измерительной технике

YR1030, миллиомметр для измерения малых сопротивлений и внутреннего сопротивления аккумуляторов

Я выкладывал довольно много обзоров аккумуляторов и меня часто спрашивали — почему в обзорах нет измерения внутреннего сопротивления этих аккумуляторов. Ответ обычно был один — имеющиеся у меня приборы не позволяют измерять этот параметр корректно, потому смысла в измерениях нет. Но относительно недавно я разжился специализированным прибором, как раз предназначенным для подобных измерений. Данное устройство относится к очень специфическому классу измерительных приборов, но допускаю что оно может пригодиться не только в работе с аккумуляторами. Заказывался прибор на ТаоБао, в магазине известного китайского, даже не знаю как точно назвать, пусть будет кастомайзера — 100 MHz. На самом деле разницы где заказывать прибор особо не было, просто на тот момент у него была самая низкая цена, а кроме того у него же были и низкоомные резисторы.

Для начала что такое — внутреннее сопротивление аккумуляторов. Я не буду много расписывать и попробую пояснить хоть и грубо, но надеюсь что наглядно. Представьте что существует идеальный аккумулятор, он не имеет ни саморазряда, ни внутреннего сопротивления, вот такой себе «сферический конь в ваккууме». Этот идеальный элемент находится внутри вашего аккумулятора, но также внутри него есть два неких резистора, один называется Rs, он включен последовательно с аккумулятором, второй — Rp, он соответственно включен параллельно, при этом: Rs — это сопротивление и является — внутреннее последовательное сопротивление, оно отвечает за ток, который способен отдать аккумулятор. Rp — а это сопротивление, которое разряжает ваш аккумулятор пока он лежит на полке.

Читайте также: Терморегулятор для водонагревателя: как проверить

Вообще все это несколько сложнее чем такая вот схематическая пара резисторов, так как аккумулятор является химическим элементом, но для общего понимания более чем достаточно.

Справа вторая схема, снаружи аккумулятора показаны также паразитные сопротивления, например контакты холдера, которые увеличивают последовательное сопротивление, и к примеру ваша схема, которая может иметь небольшое сопротивление и также разряжать аккумулятор. Справедливости ради точно такая же картина наблюдается к примеру и у конденсаторов и называется этот параметр ESR (Эквивалентное Последовательное Сопротивление). Даже обычный дроссель из-за активного сопротивления обмотки тоже можно условно считать имеющим данный параметр.

И если в случае внешних компонентов мы можем что-то улучшить, например применить более качественные холдеры, а то и вообще припаять провода напрямую к аккумулятору, промыть плату или использовать менее потребляющие компоненты чтобы уменьшить утечки. То в случае внутренних параметров можно действовать только косвенно, например изменением температуры. С ростом температуры оба сопротивления уменьшаются и чтобы аккумулятор имел меньше саморазряд, то его хранят в прохладном месте, а чтобы имел меньшее внутреннее сопротивление, то используют «теплым».

Как же это все выглядит в реальной жизни, а не на виртуальных схемах. Берем к примеру пару аккумуляторов, US18650VTC4 и LGDBHG21865 (более известные как шоколадки).

Так как внутреннее сопротивления является важным параметром, то оно почти всегда обозначается в даташите, например у первых оно составляет 12 мОм (0.012 Ома)

А у вторых до 17 мОм.

Фактически, внутреннее сопротивление и влияет на нагрев аккумулятора, проявляется это при работе под большим током. Например 12 мОм при 15 Амперах дадут 0.18 Вольта падения, если 0.18 умножить на 15, то получим 2.7 Ватта в тепло. Для второго аккумулятора все еще хуже, 17х15=0.255 Вольта и 0.255х15=3.825 Ватта.

Конечно это все очень грубо и утрированно, но наглядный пример ниже на фото, после полного разряда током 15 Ампер температура первого 70 градусов, а второго почти 80. Но кроме температуры больше падение напряжения под нагрузкой, что может быть критично для мощных потребителей, например электронных сигарет, электроинструмента, а также различных квадрокоптеров, машинок и пр.

Для измерения данного параметра можно использовать различные инструменты, но наиболее правильным является применение специализированных приборов и я в ходе обзора попробую объяснить, почему, а пока перейду к собственно обзору.

Получил я свой заказ упакованным в раздельные пакетики, в одном лежал прибор, во втором резисторы, так как они были заказаны вторым лотом. Всего получается что я имею: Прибор Шупы к прибору Тестовые резисторы.

Читайте также: Устройство электрического теплого пола: виды, схемы, монтаж своими руками

Вариантов дополнительной комплектации у продавца много, я выбрал вариант прибор + щупы и его цена указана в заголовке, а также набор резисторов.

Резисторы были заказаны для последующей проверки точности работы прибора, как обозреваемого, так и других, имеющихся в хозяйстве. Стоит у продавца такой набор 1.64 доллара (на момент заказа было 1.48), что очень даже неплохо. Номиналы резисторов 1. 1 мОм 1% 2. 2.2 мОм 0.5% 3. 10 мОм 0.5%

Резисторы имеют четырехпроводное подключение, рассчитаны на мощность до 10 Ватт и имеют возможность установки на радиатор.

А так как резисторы фирменные, производства Isabellenhütte, то бы найден и даташит на них, где указаны как параметры резисторов, так и их внутренняя конструкция. Из даташита можно узнать, что выпускаются резисторы и с точностью 0.1%, но у меня только 0.5 и 1.0%, что также неплохо, особенно при таких малых номиналах.

В комплекте были щупы в четырехпроводном варианте. Вообще практически во всех подобных приборах используется именно четырехпроводная схема подключения измеряемого компонента.

Здесь я процитирую мое же пояснение по поводу четырехпроводного подключения из другого обзора.

При привычном нам измерении сопротивления (кстати не только сопротивления) может довольно сильно влиять такая паразитная вещь, как провода к щупам. Думаю многие знают, что редко какой мультиметр при замкнутых щупах и нижнем пределе измерения покажет 0. На индикаторе обычно при этом отображается некое значение примерно 0.05-0.5 Ома, это и есть паразитное сопротивление. Иногда его можно компенсировать путем включения функции относительных измерений(Rel), но это не всегда удобно и далеко не всегда корректно.

Если говорить об измерении внутреннего сопротивления аккумуляторов, то подавляющее большинство популярных зарядных устройств типа Опуса, Литокалы, Аймакса и пр. используют двухпроводную схему. В моей электронной нагрузке, которую я использую для тестирования аккумуляторов подключение четырехпроводное, но провода соединяются около крокодилов и к аккумулятору подключаются в двух точках и даже если переделать кассету для аккумулятора так, чтобы подключение было четырехпроводным, ничего особо это все равно не даст, так как практически все эти устройства измеряют емкость при постоянном токе.

Сам принцип измерения сопротивления довольно прост. Подключаем компонент к источнику тока и измеряем напряжение на компоненте. Но так как у нас есть сопротивление проводов, то получим в итоге сумму, состоящею из реального сопротивления компонента и сопротивления провода. Если сопротивление большое, то обычно это особой роли не играет, а вот если речь идет о величинах в 1-10 Ом и меньше, то проблема вылазит в полный рост. Для решения этой проблемы разделяют цепи, по которым идет ток через компонент и цепи непосредственно измерения.

В реальной жизни это выглядит примерно так, как показано на схеме.

Но в случае измерения внутреннего сопротивления аккумуляторов, впрочем как и конденсаторов, использовать проверку постоянным током некорректно. Обусловлено это тем, что здесь принимает участие и химия, а также процессы происходящие в процессе заряда/разряда. Потому принято измерять внутреннее сопротивление аккумуляторов на частоте 1 кГц, хотя у некоторых аккумуляторов указано сопротивление и для режима с постоянным током, на скриншоте заметно что значение при этом может значительно отличаться (верхнее при переменном, нижнее при постоянном). И если четырехпроводную схему еще можно «допилить», то сделать прибор с измерением при переменном токе несколько сложнее. Такой принцип используется в правильных тестерах аккумуляторов и измерителях ESR конденсаторов, да и вообще в LCR измерителях

Собственно это и есть ответ на вопрос, почему я не измеряю и другим не рекомендую это делать при помощи распространенных устройств «бытового» уровня, которые не имеют ни четырехпроводной схемы подключения, ни режима измерения на переменном токе.

Щупы представляют собой конструкцию из четырех подпружиненных контактов, вставленных в металлические трубки. В руках держать удобно, провода правда коротковаты, но довольно мягкие. Подключение к прибору при помощи USB разъема. Также в комплекте дали четыре запасных контакта, часть которая подключается к тестируемому элементу выполнена в виде розочки, потому довольно неплохо держится на выводе компонента и не соскакивает.

Вариант подключения с использованием USB разъема выглядит несколько спорным, но лично на мой взгляд более чем удобен, а помимо нормального контакта еще и легко ремонтируемым.

К внешнему оформлению прибора претензий почти нет, аккуратная серая коробочка.

Читайте также: Принцип работы тиристорного пускателя трехфазного переменного тока.

Все обозначения на кнопках выполнены на английском и китайском языках, впрочем и кнопок всего четыре, потому запутаться очень тяжело.

Краткие характеристики прибора есть снизу корпуса, полные выглядят следующим образом:Измерение сопротивления

Диапазон 20 мОм, разрешение 0,01 мОм, погрешность 0,7% + 7зн (когда включена функция ZR) Диапазон 200 мОм, разрешение 0,1 мОм, погрешность 0,5% + 5зн Диапазон 2 Ом, разрешение 1 мОм, погрешность 0,5% + 5зн Диапазон 20 Ом, разрешение 10 мОм, погрешность 0,5% + 5зн Диапазон 200 Ом, разрешение 0,1 Ом, погрешность 0,6% + 5зн

Измерение напряжения

Диапазон 2В, разрешение 0,001В, погрешность 0,8% + 5зн Диапазон 20 В, разрешение 0,01 В, погрешность 0,8% + 5зн Диапазон 28 В, разрешение 0,1 В, погрешность 0,8% + 5зн

На одном из торцов находится разъем подключения щупов и microUSB для заряда аккумулятора прибора. Когда делал фото, то обратил внимание что надписи «вверх ногами», потом у подумал что все логично, когда подключаете разъемы, то держите прибор экраном к себе и надписи читаются правильно, чаще встречал наоборот

Кнопка Power выполняет сразу несколько функций: 1. Собственно включение 2. При длительном нажатии — выключение, но дается запрос да/нет, «да» находится слева и это соответственно средняя кнопка. 3. При коротком нажатии вход в меню настроек, второе нажатие — выход из меню

Также коротким нажатием можно включить подсветку на примерно 10-15 секунд, подсветка умеет автоматически включаться при появлении напряжения на входе прибора, т.е. при подключении аккумулятора.

Справа расположены две кнопки —Range R

иRange U, первая переключает диапазоны измерения сопротивления (авто, 20 мОм, 200 мОм, 2 Ома, 20 Ом, 200 Ом), вторая отвечает за диапазоны измерения напряжения (авто, 2 В, 20 В, 28 В). У меня все время прибор работал в режимах авто, автопереключение быстрое, проблем не обнаружено, хотя пару раз в краях диапазонов не всегда переходило, но в данном случае это влияние гистерезиса автоматики.

1, 2. Средняя кнопка обозначена как Hold\ZEROR. Короткое нажатие — функция фиксации показаний, длительное — отключение функции автоматического удержания нуля. По умолчанию функция ZEROR включена (ZR на экране), а все измерения проводил именно в таком режиме. Можно запустить ее принудительно включив/выключив. 3, 4. Меню, вот здесь полный ад и рай одновременно, по пробую пояснить. Ад — все на китайском, причем как я понял, большая часть приборов идут именно с китайским. Рай — В нормально работающем и настроенном приборе вам делать нечего, все нормально работает «из коробки».

В интернете я нашел англоязычный вариант меню из которого следует что имеется:1.

Нормальный режим2.Режим сортировки компонентов.3.Время работы подсветки, 5-60 секунд4.Время автовыключения прибора и перехода в энергосберегающий режим автоотключение 5-60 минут энергосберегающий режим — 5-30 минут5.Настройка режима сортировки аккумуляторов A — RaUxa(установленное значение) B — RbUxb(установленное значение) C — RcUxc(установленное значение) 6. Количество аккумуляторов в режиме сортировки 7. Калибровка 8. Сброс настроек на заводские 9. Ток заряда аккумулятора — 200/400 мА, по умолчанию 200 мА. Последний пункт в старой версии прибора отсутствует, хотя как по мне, то он особо и не нужен.

Энергосберегающий режим, вывод нажатием кнопки — power.

Снизу корпуса находится четыре самореза, потому устройство разбирается очень легко. правда у меня дисплей приклеился к фальшпанели, еле отклеил.

Разборка

Конструкция на вид хоть и не промышленная, но очень качественная.

Снизу установлен аккумулятор, емкость не проверял, как и время автономной работы. но неделю тестировал устройство в разных режимах, прибор как работал, так и работает, кушать пока не просит

Да, на этом этапе можно сказать, что обзор станет чуть короче, почти на всех микросхемах маркировка сошлифована

Но на всякий случай чуть поближе. Узел питания, заряда аккумулятора и кнопки управления. Приятно удивило наличие на плате предохранителя в цепи аккумулятора, хотя сам аккумулятор также имеет собственную защиту.

«Мозги», видео явно микроконтроллер, а также пара подстроечных резисторов, предположительно один регулирует контраст дисплея, второй скорее всего стоит где нибудь в цепи коррекции, но ничего утверждать не могу и лучше их вообще не трогать.

Снизу «пищалка» и больше ничего.

Перед тестами пару слов о нюансах 1. Просто общий вид экрана, при разомкнутых щупах показывает перегрузку. 2. Если соединить щупы друг с другом, выводит 0 3,4. Но что удивило, при попытке измерить сопротивление кожи показывает ерунду. Хотя уже потом я понял что все логично, ведь прибор четырехпроводной и ему надо и соединение одноименных щупов.

Первым делом решено было проверить шунты. Хотя по большому счету это особо значения не имеет, так как результат будет зависеть от точности самого шунта и погрешности двух мультиметров одновременно. Использовались два мультиметра: UT61E в режиме измерения тока UT181A в режиме измерения напряжения.

Возможно следовало подключить их наоборот, но этот эксперимент я уже не проводил.

Проверка проходила при двух контрольных значениях тока 1 и 5 Ампер, результаты измерения показали что: Шунт 1 мОм имеет 0.997 мОм и 1.0008 мОм Шунт 2.2 мОм — 2.206 мОм и 2.2076 мОм Шунт 10 мОм — 10.021 мОм и 10.0214 мОм. Показания при токе 1 и 5 Ампер немного отличаются, скорее всего из-за прогрева шунта амперметра, также в процессе были небольшие колебания последнего знака вольтметра, около ± 2 знака, но в любом случае показания совпадают с заявленными значениями.

Читайте также: Конденсаторы для силовой электроники.Сравнение пленочных конденсаторов с электролитическими

1. Обозреваемый прибор также подключался к резисторам в четырехпроводном варианте. 2, 3, 4. Результаты просто отличные, сначала прибор показывает меньшее значение, но после пары секунд стабилизируется на показанном. Значение держится очень стабильно, лишь иногда может перескочить последний разряд на одну единицу.

А вот дальше я решил сравнить со своим RLC измерителем, но получил несколько странные результаты. 1. Установка нуля путем соединения через кусок медного провода. 2, 3. Резисторы 1 и 2.2 мОм все отлично 4. Резистор 10 мОм показывал 9.1-9.2 вместо 10 5, 6. просто ради любопытства тыкнул обычные 5% резисторы сопротивление 0.1 и 0.22 Ома, результат в принципе более-менее адекватный, что говорит о сложностях с линейностью именно в младшем диапазоне.

Взял те же резисторы 0.1 и 0.22 Ома и проверил их обозреваемым прибором, он показал сопротивление немного выше чем RLC измеритель.

Дальше я решил поэкспериментировать со своим предыдущим прибором. Для начала попробовал установить ноль прямым соединением щупов. Теперь все наоборот, 1 и 2.2 мОм показали завышенные результаты, а у остальных практически совпали с обозреваемым прибором. У моего RLC метра декларируется 0.5% в базовом варианте и 0.3% при дополнительной калибровке. при 0.5% и 1.5 Ома диапазоне погрешность будет составлять +\- 0.75 мОм. Можно конечно сказать что результаты примерно совпадают в обоих случаях, но на самой границе диапазона, но как-то все равно «не то». Получается что для работы с малыми сопротивлениями надо применять один способ установки нуля, а с сопротивлениями 5 мОм и выше — другой.

Измерения выше проводились при частоте 1 кГц, как и у обозреваемого прибора, но после того как я перевел RLC на частоту 100 Гц, то картина стала заметно лучше. В общем думаю надо еще разбираться, так как RLC измеритель имеет дополнительные настройки и возможно есть шанс настроить линейность.

После этого решено проверить еще несколько резисторов: 1. 0.47 Ома 1% 2. 5.1 Ома 1% 3. 9.76 Ома 2% 4. 75 Ом 1%

Резисторы 9.76 и 75 Ом я дополнительно не проверял, а вот 0.1, 0.22 Ома, которые были показаны ранее, а также 0.47 и 5.1 Ома проверил предварительно по той же методике, что использовал при проверке шунтов. В итоге было получено: Резистор 0.1 Ома — 0.09817 Ома реально 0.22 Ома — 0.21721 Ома 0.47 Ома — 0.47054 Ома 5.1 Ома — 5.105 Ома.

И соответственно результаты полученные при помощи обозреваемого прибора, как по мне, то довольно неплохо.

Так как прибор предназначен для работы с аккумуляторами, то он помимо внутреннего сопротивления умеет измерять и напряжение. Максимальное входное напряжение до 28 Вольт и его лучше не превышать, а вот полярность может быть любой, просто напряжение отобразится со знаком минус.

В процессе теста я сравнил показания вольтметра с более точным прибором, результаты отличные, но почти во всех тестах прибор завышал результат на 1 знак, что вполне нормально для цифровых приборов.

Был проведен и дополнительный тест, для этого я взял конденсатор и три шунта показанные в самом начале обзора. Сначала я измерил внутреннее сопротивление конденсатора, а затем подключал последовательно с конденсатором шунты и смотрел насколько полученный результат отличается от расчетного.

1. ESR конденсатора 30.1 мОм 2. Конденсатор + резистор 1 мОм, измеренное 31.4, расчетное 31.1 3. Конденсатор + резистор 2.2 мОм, измеренное 33.2, расчетное 32.1 4. Конденсатор + резистор 10 мОм, измеренное 40.7, расчетное 40.1

Результаты очень неплохие, подкачал тест с резистором 2.2 мОм, но я думаю что такая погрешность допустима.

И конечно аккумуляторы. Сначала я взял аккумулятор которому два года и по даташиту у него сопротивление 12 мОм. 2. В полностью заряженном состоянии — 12.46 мОм. 3. В разряженном — 12.68 мОм 4. А вот пример увеличение внутреннего сопротивления при низкой температуре. Разряженный аккумулятор был охлажден примерно до -20 градусов. В результате увеличение сопротивление составило почти 1.6 раза.

Для примера тест аккумуляторов относящихся к категории «подарить врагу».

1, 2. Желтый, заряжен и разряжен. 3, 4. Синий, заряжен и разряжен.

Как можно понять, это совсем мрак. Если установить такой аккумулятор в повербанк, то из-за высокого внутреннего сопротивления он отключится раньше даже не выработав полностью ту небольшую емкость которая есть у аккумулятора. На фото напряжение на аккумуляторах как раз после разряда в повербанке.

А вот измерение сопротивление литий-железного аккумулятора. Конечно здесь сопротивление великовато, отчасти это обусловлено тем, что аккумулятор мелкий. Чем меньше размер аккумулятора, тем меньше площадь электродов, тем выше сопротивление. Впрочем даже в пределах одного формфактора сопротивление может отличаться, существуют «высокотоковые» аккумуляторы с низким сопротивлением и «высокоемкие» с более высоким сопротивлением, но и большей емкостью.

1. Сопротивление при комнатной температуре 114.4 мОм 2. Сопротивление при температуре -20 градусов — 140.9 мОм, или в 1.23 раза выше чем при +25.

У показанного выше US18650VTC4 разница составляла почти 1.6 раза, но могу сказать что если нагрузить аккумулятор, то за счет самопрогрева он быстро вернет сопротивление в нормальное состояние.

Уже скорее в качестве дополнения осциллограммы на щупах прибора. 1. Только выход источника тока. 2. Пары щупов соединены. Так как данный режим является основным при использовании прибора, то дальнейшие осциллограммы снимались с соединенными парами щупов.

Осциллограммы в разных режимах работы. Авто, 20 мОм, 200 мОм, 2 Ома, 20 Ом, 200 Ом.

Видеоверсия обзора

И под конец небольшой бонус. Когда брал резисторы для проверки, то наткнулся на ленту с резисторами 0.1 Ома, по крайней мере именно так расшифровывается их маркировка — коричневый, черный, серебряный, золотой = 0.1 Ом, 5%

Но самое интересное выяснилось в процессе, Из 6 штук только 1 (один) имел сопротивление около 0.1 Ома, а у пяти было 0.224 Ома! Я даже проверял их в одной ленте, это отчетливо видно на фото. Резисторы покупались в оффлайне, у проверенного продавца. правда как-то давно я уже встречал ошибочную маркировку, но там все резисторы в ленте были промаркированы некорректно, но чтобы так как здесь…

В качестве резюме могу сказать, что прибор однозначно понравился, как минимум высокой точностью и удобством пользования. Его можно применять как для измерения внутреннего сопротивления аккумуляторов, так и для проверки ESR конденсаторов и что также весьма важно — для измерения очень малых величин сопротивления. Единственный пожалуй минус, это то, что меню полностью на китайском языке. Особенно это будет неудобно, если будет нужна функция сортировки, увыПри обычной работе в меню лазить не приходится, все работает «как есть» и вполне нормально.

Как-то немного расстроили сложности при работе с моим RLC измерителем, надо еще разбираться почему такое происходит. Как было выяснено, по большому счет он «со скрипом» пролазит в указанные 0.5%, но при двух разных вариантах получается смещение в одну или другую сторону, при этом при 100Гц показания корректны.

Спонсором данного обзора выступил посредник yoybuy.com, который взял на себя оплату доставки. Стоимость прибора + комплекта резисторов вместе с доставкой к посреднику выходит около 30 долларов, стоимость доставки от посредника зависит от разных факторов. На всякий случай информация о весе, прибор со щупами — 153 грамма, резисторы — 15 грамм, информация со страницы заказа у посредника.

На этом у меня все, надеюсь что обзор был полезен, а также буду рад вопросам и предложениям тестов.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Устройство и принцип действия

Переходное сопротивление

Если говорить о принципе действия, то все устройства такого типа, что позволяют осуществлять различные замеры в электрических сетях, бывают 2 видов:

  • электромеханического типа;
  • электронные.

Первая категория представляет собой стрелочные устройства. В них стрелка крепится к специальной раме, куда намотан кабель. Такая катушка будет располагаться рядом с магнитом в тех устройствах, что обычно применяются для сетей с постоянным током. Или рядом с другой катушкой – если прибор предназначается для тока переменного типа.

Но если для подключения использовать диодный мост, то осуществить необходимые измерения в сети переменного тока он сможет, но с небольшой потерей точности.

Когда электрический ток проходит через обмотку, то в ней появляется электромагнитное поле, которое осуществляет взаимодействие с магнитом либо иной обмоткой, и происходит поворот рамки. Вращаться катушке, где расположена стрелка, не дает пружина. По этой причине угол поворота рамки будет соответствовать току, который через нее идет, и потенциалу на клеммах.

Он может быть поршневым, выполненным из цилиндра и поршня, или сделанным из алюминиевой пластины. Чтобы увеличить точность показаний, стрелка имеет специальные противовесы, что сводят к нулю влияние силы тяжести. Да и сама система делается из такого типа стали, как легированная, чтобы уменьшает ее износ.

Чувствительный элемент в электронных аналогах – электронная плата, что осуществляет трансформацию входящего сигнала в приборные показания. Работать это устройство может либо от напряжения, которое измеряется, либо от батареек или внешнего питания. Сами по себе электронные вольтметры делятся на 2 категории:

  • аналоговые;
  • цифровые.

В устройствах, относящихся к первой категории, присутствует преобразователь входящего сигнала в угол стрелочного поворота, который показывает величину исследуемого напряжения, что отображается на шкале. Минусом таких устройств будет необходимость пересчета показаний шкалы в случае смены измерительного предела.

Цифровой вольтметр оснащен соответствующим дисплеем, а также преобразователем, благодаря которым сигнал приобретает цифровой вид. Если устройство подключается в сеть, где присутствует постоянный ток, на табло можно увидеть полярность подключения. Отличительными чертами такого прибора будет компактность, а также точность. Правда, последний момент будет зависеть от модели встроенного контроллера.

Электрическая цепь, как проверить исправность прибора

Основное правило точного определения сопротивления — это грамотная подготовка измерительного оборудования к работе и использование его по назначению.

Электрическая цепь, проверка целостности электрической цепи

На производственных предприятиях все электроизмерительные приборы, включая омметры, должны своевременно проверяться на:

У бытовых приборов этими вопросами должен заниматься владелец, сдавая свой тестер в соответствующие лаборатории. Перед каждым замером сопротивления необходимо:

И всегда помните о проверке отсутствия напряжения на тестируемом участке до начала измерений.

Классификация ваттметров

В общем виде, ваттметры можно разделить на аналоговые и цифровые. Оба класса могут ориентироваться на постоянный, или переменный ток, быть универсальными, обладать различной точностью и нишей использования. Существуют одно- и трехфазные измерительные приборы.

Большинство цифровых и аналоговых измерителей фиксируют «мгновенные» значения характеристики, что может быть удобно с одной стороны для контроля, но не дает обзора ситуации в целом — на общее потребление линии по времени.

Электродинамические аналоговые приборы

Основа электродинамического ваттметра — две катушки, одна из которых имеет фиксированное положение, вторая подвижна и закреплена на оси индикаторной стрелки. Обе имеет разное количество витков и подключение к линии. Первая монтируется к исследуемой цепи последовательно, вторая — параллельно через резистор. Принцип работы механизма устройства заключен в том, что чем сильнее ток течет в фиксированной катушке, тем мощнее магнитные поля между ней и подвижной, а значит больше отклоняется стрелка, указывающая на текущее значение характеристики.

Схема включения ваттметра подобного класса подразумевает нахождение его последовательно с линией нагрузки потребителя. Главный минус большинства аналоговых устройств — без сильного усложнения конструкции, невозможно получать раздельную информацию по активной, реактивной и полной мощности.

Цифровые измерительные аппараты

Принцип действия цифрового измерительного прибора всегда одинаков — внутренняя микро-ЭВМ (микроконтроллер) обрабатывает сигнал от аналогового датчика исследуемой линии и выводит результат на экран или числовой индикатор. Схема подключения ваттметра подобного класса похожа на используемую у аналоговых — параллельно нагрузке. Основной плюс цифровых измерителей в их универсальности и широте возможностей. К примеру, для раздельного вычисления реактивной, активной и полной мощности, не нужно использовать сложные аппаратные конструкции — достаточно предусмотреть несколько дополнительных сенсоров. Не редкость объединение разноплановых измерительных устройств в одном корпусе — амперметра, вольтметра, анализатора «мгновенного» расхода и его значений по периоду времени.

Мостовой метод

Устройства, применяемые для реализации такого измерения, именуют измерительными мостами. Четырехплечевой или одинарный мост содержит в себе две диагонали и четыре плеча:

Мост образуют три резистора, значения которых известны – R2, R3, R4 и соответственно сопротивление, значение которого необходимо измерить Rx. В одну из диагоналей моста необходимо подключить источник питания, для данного случая источник Е0 подключенный к зажимам a и b, а другую нулевой индикатор НИ (зажимы c и d), который выполняет роль указателя симметричности моста. Когда потенциалы в точках c и d будут равны, то отклонение в НИ протекает ток IНИ = 0 и его отклонение тоже равно нулю. Мост в состоянии равновесия. Будут выполнятся следующие соотношения: I1 = I2, I3 = I4, RxI1=R3I3, R2I2=R4I4. Учтя равенство токов и почленно разделив два последних уравнения получим:

Из данного выражения можем выделить искомое сопротивление:

Плечо R2 именуют плечом сравнения, а плечами отношений R3 и R4 соответственно.

Методом одинарного моста измеряют только средние сопротивления. Измерять им малые и большие сопротивления не рекомендуют. Нижний предел измерений моста (единицы Ом) ограничивается влиянием сопротивлений проводов и контактов, которые подключаются в плечо ас последовательно с объектом измерения Rх. Верхний предел (105 Ом) ограничен шунтирующим действием токов утечки.

Программная реализация

Алгоритм работы прибора и сам код довольно сложны. Необходимо установить диапазон измерения, управляя входами ULN2003 (выходы Arduino D10, D11, D12), который вместе с режимом работы (определяется состоянием кнопок) учитывается в дальнейшем. Затем выполняется считывание АЦП для расчета сопротивления и отображение значения на индикаторе.

С целью упрощения программного кода в скетче было использовано несколько библиотек, в том числе Wire.h, LiquidCrystal_I2C и библиотека для работы с EEPROM. Библиотека Wire используется для облегчения процесса обмена данными по шине I 2 C между Arduino, ЖК индикатором и АЦП. Частота тактового сигнала шины I 2 C выбрана 400 кГц. Библиотека LiquidCrystal_I2C (не предустановленная в Arduino IDE) помогает взаимодействовать с ЖК-индикатором, а библиотека EEPROM используется для доступа к энергонезависимой памяти МК, обеспечивая хранение информации о режиме работы и диапазоне измерения.

Метод амперметра-вольтметра

Пожалуй, он самый простой для измерения средних и малых сопротивлений R.

При измерении малых R рекомендуют применять такую схему:

Потому что в данном случае IA≈IR из-за большого внутреннего сопротивления вольтметра относительно R и будет выполнено равенство IV«IR. При среднем значении R рекомендована такая схема:

Так как в этом случае UV≈UR из-за очень малого внутреннего сопротивления амперметра. Соответственно применив закон Ома получим:

Из-за наличия внутренних сопротивлений в приборах возникает погрешность, что есть основным недостатком этого метода. Но при измерении малых R сопротивление вольтметра будет равно RV>100R, а для измерения средних R амперметра RA<100R, то в таком случае суммарная погрешность не будет более 1%.

Измерение значений постоянного тока

Постоянные токи присутствуют во многих электронных схемах, особенно это касается блоков питания, различных зарядных устройств. Чтобы починить такие приборы, мастерам просто необходимо знать как подключить амперметр. На практике же обычный человек, не связанный с радиоэлектроникой, может тоже применить эти знания, например, чтобы определить, насколько держит заряд аккумуляторная батарея из фотоаппарата.

Берут полностью заряженную батарею. Предположим ее номинальное напряжение 3,5 вольта (В). Подбирают лампочку на такой номинал и собирают схему: батарея – измерительный прибор – лампочка. Записывают, что показывает амперметр. Например, лампочка потребляет ток 150 миллиампер (mA), а на аккумуляторе написана емкость 1500 миллиампер-часов (mAh), это означает, что хороший аккумулятор должен выдавать ток в 150 mA около 10 часов!

Бесконтактный способ измерения тока

Сопротивление обмоток электродвигателя таблицаИногда разорвать электрическую цепь для включения измерительного устройства технически невозможно, а замерить ток нужно (касаемо обычных и высоковольтных электрических цепей). Как подключить амперметр в этом случае? Для этого был разработан прибор бесконтактного измерения тока – токовые клещи. Принцип его действия основан на том, что любой ток, проходя через проводник, создает некоторое электромагнитное поле. Величина этого поля тем больше, чем больше сила тока. Измеряя показатель напряженности поля и преобразуя эти данные, получают реальное значение силы, выраженное в амперах.

Это очень удобный способ проведения замеров, ведь не нужно долго думать, как подключить амперметр. К зарядному устройству и любой электрической цепи можно подсоединить клещи прямо на изолированный провод и снять показания.

Комплект поставки

Измеритель малых сопротивлений поставляется с таким оснащением: 4-проводный кабель длиной 2,5 м, 4 зажима, 2 наконечника для измерения сопротивления, адаптер питания, аккумулятор, провода для разъемов USB, RS 232, диск с программным обеспечением, инструкция по использованию, сертификат. Точный комплект поставки для конкретной модели можно узнать на странице товара или у наших консультантов.

Чтобы купить цифровой микроомметр, уточнить цены и другие подробности, используйте телефон горячей линии.

Добавить комментарий