Инфо-baza
445 0

Перевод нанофарад в микрофарады

Кодировка 3-мя цифрами

Первые две цифры указывают на значение емкости в пикофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пф первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пф, код0R5 — 0.5 пФ.

Кодировка 4-мя цифрами

Возможны варианты кодирования 4-значным числом. Но и в этом случае последняя цифра указывает количество нулей, а первые три — емкость в пикофарадах (pF).

Читайте также: Что такое модульный контактор и для чего он нужен?

В маркировке может использоватся буква R, число что стоит после нее значит десятые доли Микрофарада, вот примеры:

Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандар- тами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

14 5101 Конденсаторы

конденсаторсправочник

Правила маркировки конденсаторов постоянной ёмкости

При сборке самодельных электронных схем поневоле сталкиваешься с подбором необходимых конденсаторов.

Притом, для сборки устройства можно использовать конденсаторы уже бывшие в употреблении и поработавшие какое-то время в радиоэлектронной аппаратуре.

Естественно, перед вторичным использованием необходимо проверить конденсаторы, особенно электролитические, которые сильнее подвержены старению.

При подборе конденсаторов постоянной ёмкости необходимо разбираться в маркировке этих радиоэлементов, иначе при ошибке собранное устройство либо откажется работать правильно, либо вообще не заработает.

Встаёт вопрос, как прочитать маркировку конденсатора?

У конденсатора существует несколько важных параметров, которые стоит учитывать при их использовании.

  • Первое, этономинальная ёмкость конденсатора.

    Измеряется в долях Фарады.

  • Второе – допуск. Или по-другомудопустимое отклонение номинальной ёмкостиот указанной. Этот параметр редко учитывается, так как в бытовой радиоаппаратуре используются радиоэлементы с допуском до ±20%, а иногда и более. Всё зависит от назначения устройства и особенностей конкретного прибора. На принципиальных схемах этот параметр, как правило, не указывается.
  • Третье, что указывается в маркировке, этодопустимое рабочее напряжение.

    Это очень важный параметр, на него следует обращать внимание, если конденсатор будет эксплуатироваться в высоковольтных цепях.

Итак, разберёмся в том, как маркируют конденсаторы.

Одни из самых ходовых конденсаторов, которые можно использовать – это конденсаторы постоянной ёмкости K73 – 17, К73 – 44, К78 – 2, керамические КМ-5, КМ-6 и им подобные.

Читайте также: Испытание мощных трансформаторов и реакторов - Опыт холостого хода

Также в радиоэлектронной аппаратуре импортного производства используются аналоги этих конденсаторов. Их маркировка отличается от отечественной.

Конденсаторы отечественного производства К73-17 представляют собой плёночные полиэтилентерефталатные защищённые конденсаторы. На корпусе данных конденсаторов маркировка наноситься буквенно-числовым индексом, например 100nJ, 330nK, 220nM, 39nJ, 2n2M.

Конденсаторы серии К73 и их маркировка

Правила маркировки.

Ёмкости от 100 пФ и до 0,1 мкФ маркируют в нанофарадах, указывая буквуHилиn.

Обозначение 100n– это значение номинальной ёмкости.

Для 100n – 100 нанофарад (нФ) — 0,1 микрофарад (мкФ). Таким образом, конденсатор с индексом 100n имеет ёмкость 0,1мкФ. Для других обозначений аналогично. К примеру: 330n – 0,33 мкФ, 10n – 0,01 мкФ. Для 2n2 – 0,0022 мкФ или 2200 пикофарад (2200 пФ).

Можно встретить маркировку вида 47HC. Данная запись соответствует 47nK и составляет 47 нанофарад или 0,047 мкФ. Аналогично 22НС – 0,022 мкФ.

Для того чтобы легко определить ёмкость, необходимо знать обозначения основных дольных единиц – милли, микро, нано, пико и их числовые значения.

Подробнее об этом читайте здесь.

Также в маркировке конденсаторов К73 встречаются такие обозначения, как M47C, M10C. Здесь, букваМусловно означает микрофарад. Значение 47 стоит после М, т.е номинальная ёмкость является дольной частью микрофарады, т.е 0,47 мкФ. Для M10C — 0,1 мкФ.

Маркировка конденсаторов в зависимости от ёмкости

При приобретении элементов, соответствующих расчетным данным для той или иной цепи, пользователю нужно уметь расшифровывать обозначения на корпусах устройств, информирующие, сколько емкости они способны накопить. У различных производителей приняты разные системы маркировки радиодеталей.

Кодировка маленьких по размерам устройств

На корпусах советских радиодеталей было принято обозначать пикофарады целым числом (например, 25). Если на такой детали параметр указан числом, содержащим десятичную дробную часть, подразумеваются микрофарады. Сами буквенные обозначения (пФ, мкФ и им подобные) прописывать на корпусах было не принято.

Важно! Что касается российских изделий, нанофарады и микрофарады указываются традиционными сокращениями, в которых редуцируется буква Ф (получается «н» и «мк», соответственно). Емкость, исчисляющуюся в пикофарадах, указывают только числом, как и у советских деталей

Читайте также: Тепловая мощность формула расчета и сферы применения

Когда латинская приставка, указывающая кратную единицу, находится перед числом, последнее нужно считать как сотые доли. К примеру, n45 означает 0,45 нанофарад. Когда приставка находится в середине числа, на ее месте полагается быть запятой: 4u3 – 4,3 микрофарад. Применяется и трехзначная пикофарадная кодировка: когда последняя из цифр не больше 6, чтобы получить емкостное значение, к первым двум цифрам нужно приписать число нулей, соответствующее этой цифре (340 – 34 пикофарада, 342 – 3400). Цифры 7, 8 и 9 соответствуют перемножениям двузначного числа на 0,001, 0,01 и 0,1, соответственно.

Используется также обозначение номиналов изделий цветными полосами. Указание емкостного параметра регламентируется стандартом EIA.

Кодировка больших по размерам устройств

У крупногабаритных компонентов, к примеру, электролитических из алюминия, данные о параметрах, включая емкостной показатель, указываются на поверхности корпуса. Обычно емкость таких деталей выражается в микрофарадах. Буквы M или MFD символизируют именно эту единицу. Трехзначная аббревиатура может указываться и строчными буквами – mfd.

Маркировка крупных деталей

Нанофарад (nF), электрическая ёмкость

Получается, что конденсаторы с маркировкой M10С и 100nJ обладают одинаковой ёмкостью. Различия лишь в записи.

Таким образом, ёмкость от 0,1 мкФ и выше указывается с буквойM,mвместо десятичной запятой, незначащий ноль опускается.

Номинальную ёмкость отечественных конденсаторов до 100 пФ обозначают в пикофарадах, ставя буквуПилиpпосле числа.

Если ёмкость менее 10 пФ, то ставиться букваRи две цифры. Например, 1R5 = 1,5 пФ.

На керамических конденсаторах (типа КМ5, КМ6), которые имеют малые размеры, обычно указывается только числовой код. Вот, взгляните на фото.

Керамические конденсаторы с нанесённой маркировкой ёмкости числовым кодом

Например, числовая маркировка224соответствует значению 22000пикофарад, или 220 нанофарад и 0,22 мкФ.

В данном случае 22 это числовое значение величины номинала. Цифра 4 указывает на количество нулей. Получившееся число является значением ёмкости в пикофарадах. Запись 221 означает 220 пФ, а запись 220 – 22 пФ. Если же в маркировке используется код из четырёх цифр, то первые три цифры – числовое значение величины номинала, а последняя, четвёртая – количество нулей.

Так при 4722, ёмкость равна 47200 пФ – 47,2 нФ. Думаю, с этим разобрались.

Допускаемое отклонение ёмкости маркируется либо числом в процентах (±5%, 10%, 20%), либо латинской буквой.

Иногда можно встретить старое обозначение допуска, закодированного русской буквой. Допустимое отклонение ёмкости аналогично допуску по величине сопротивления у резисторов.

Буквенный код отклонения ёмкости (допуск).

Так, если конденсатор со следующей маркировкой – M47C, то его ёмкость равна 0,047 мкФ, а допуск составляет ±10% (по старой маркировке русской буквой). Встретить конденсатор с допуском ±0,25% (по маркировке латинской буквой) в бытовой аппаратуре довольно сложно, поэтому и выбрано значение с большей погрешностью.

В основном в бытовой аппаратуре широко применяются конденсаторы с допускомH,M,J,K. Буква, обозначающая допуск указывается после значения номинальной ёмкости, вот так 22nK, 220nM, 470nJ.

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости.

Допуск в %Буквенное обозначение
лат.рус.
± 0,05pA
± 0,1pBЖ
± 0,25pCУ
± 0,5pDД
± 1,0FР
± 2,0GЛ
± 2,5H
± 5,0JИ
± 10KС
± 15L
± 20MВ
± 30NФ
-0…+100P
-10…+30Q
± 22S
-0…+50T
-0…+75UЭ
-10…+100WЮ
-20…+5YБ
-20…+80ZА

Маркировка конденсаторов по рабочему напряжению.

Немаловажным параметром конденсатора также является допустимое рабочее напряжение.

Его стоит учитывать при сборке самодельной электроники и ремонте бытовой радиоаппаратуры. Так, например, при ремонте компактных люминесцентных ламп необходимо подбирать конденсатор на соответствующее напряжение при замене вышедших из строя.

Не лишним будет брать конденсатор с запасом по рабочему напряжению.

Обычно, значение допустимого рабочего напряжения указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой.

Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения.

Читайте также: Аналоговый и цифровой сигнал. Типы сигналов и как это действует
Номинальное рабочее напряжение, BБуквенный код
1,0I
1,6R
2,5M
3,2A
4,0C
6,3B
10D
16E
20F
25G
32H
40S
50J
63K
80L
100N
125P
160Q
200Z
250W
315X
350T
400Y
450U
500V

Таким образом, мы узнали, как определить ёмкость конденсатора по маркировке, а также по ходу дела познакомились с его основными параметрами.

Маркировка импортных конденсаторов отличается, но во многом соответствует изложенной.

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

Кратные единицы ёмкости

В большинстве случаев в электротехнике оперируют деталями с малыми значениями емкостей. Иногда можно увидеть такие обозначения, как 10uf конденсатор. Малоопытный человек может не сразу понять, что значит аббревиатура uf. Следует усвоить, что наиболее распространенными в описании емкостных элементов являются следующие единицы: пикофарад (или пФ, он равен 10-12 Ф), нанофарад (нФ, 10-9 Ф) и микрофарад (мкФ, 10-6 Ф). Указание емкости конденсатора в uf обозначает именно микрофарады. Целесообразно приобрести таблицу перевода измерительных единиц разных масштабов друг в друга.

Кратные единицы на практике применяются не настолько часто. У некоторых ионисторных деталей с бинарным электрическим слоем емкостной показатель может измеряться килофарадами (кФ, 1000 Ф). Значение у стандартных конденсаторных элементов обычно не превышает сотни фарад.

Ионистор номиналом в 1 фарад

конденсатор

Конденсатор можно сравнить с небольшой батареей, он может быстро накапливать электричество и быстро переносить его. Основным параметром конденсатора является егомощность (C). Важной особенностью конденсатора является то, что он работает от переменного тока, чем больше частота переменного тока, тем ниже сопротивление. Конденсатор постоянного тока не проходит.

Резисторы представляют собой конденсаторы с постоянной емкостью и переменной емкостью.

Использование конденсаторов находится в колебательных цепях, различных фильтрах, для разделения цепей постоянного и переменного тока и в качестве блокирующих элементов.

Блок базовой мощности —фарад (Φ)Это очень большое количество, которое не используется на практике. В электронике конденсаторы с фракционной мощностьюпикофарада (пФ)до десяти тысячмикрофарад (мкФ).

1 мкФ равно миллионной части Фарада, а 1 пФ — миллионная часть микрофарада.

Применение конденсаторов

Данная категория элементов очень широко применяется во всех областях электроники и ряде других отраслей промышленности. Среди основных сфер применения стоит обозначить:

  • телевизионную и звуковоспроизводящую аппаратуру;
  • радиолокационные приборы (здесь конденсаторы помогают генерировать импульсы и увеличивать их мощность);
  • телефонные и телеграфные аппараты – в них устройства применяются с целью разделения типов цепей (по частоте, переменности-постоянности) и погашения искр в контактах;
  • измерительные электронные приборы;
  • лазеры (увеличение мощности импульсов);
  • предохранение от перенапряжения в электроэнергетических установках;
  • электросварочные работы с применением разряда;
  • блокировку генерируемых машинами радиопомех;
  • запуск электродвигателей и создание фазового сдвига в добавочной обмотке;
  • генераторы, применяемые во время испытаний электротехники для получения импульсов тока и напряжения.

Размеры конденсаторных элементов

  • Фарад

Конденсаторные элементы используются в очень широком спектре сфер – от печатных плат (миниатюрные smd-компоненты) до мощных двигателей и генераторов импульсов. Для корректного подбора конденсатора нужно уметь расшифровывать маркировку и обозначения на схемах, в частности, ориентироваться в обозначениях емкости устройств.

Электролитические конденсаторы

Для работы в аудиочастотном диапазоне, а также для фильтрации скорректированных напряжений питания требуются конденсаторы большого объема.

Такие конденсаторы называются электролитическими конденсаторами. В отличие от других типов, электролитические конденсаторы поляризованы, что означает, что их можно включать только в постоянном или пульсирующем круге, и только для полярности, которая обозначена на корпусе конденсатора.

Несоблюдение этого условия приводит к отказу конденсатора, часто сопровождаемому взрывом.

Концепция производительности

Если между Фарадом (F), Фарадом (F) между двумя телами есть емкость, это означает, что напряжение, когда заряд переносится на один кулон, изменяется на один вольт

[Изменение напряжения, В

] = [Переданный сбор, K] / [Производительность, F]

Напомним, что перенесенный заряд равен текущей мощности, умноженной на время ее потока, мы пишем формулу в более обычной форме:

[Изменение напряжения, В

] = [Текущая мощность, А] * [Время, с] / [Производительность, F]

Конденсатор, устройство стандартной емкости

Электронное устройство, специально предназначенное для изменения напряжения пропорционально накопленному заряду, называется конденсатором.

Почти каждое тело естественно образует конденсатор друг с другом, но оно становится электронным устройством, когда оно имеет точно определенную емкость, что позволяет использовать его в радиоэлектронных схемах.

Таким образом, один усилитель подает конденсатор с мощностью одного фарада на один вольт в секунду.

Напряжение на конденсаторе в настоящее время невозможно изменить, поскольку в природе нет бесконечного потока. Если клеммы заряженного конденсатора закрыты, ток должен быть непрерывным.

Фактически, конденсатор и его терминалы имеют некоторое внутреннее сопротивление, поэтому текущая мощность является окончательной, но она может быть очень большой. Аналогично, если разряженный конденсатор подключен к источнику напряжения.

Поток будет склонен к бесконечности и будет ограничен внутренним сопротивлением конденсатора и источником напряжения.

Многие ошибки в коммутационных и импульсных схемах связаны с тем, что разработчики забывают учитывать тот факт, что напряжение на конденсаторе не может быть немедленно изменено. Быстрорастворимый транзистор, который напрямую подключен к заряженному конденсатору, может легко гореть или сильно нагреваться.

Понятие емкости, правила измерения

Данная величина показывает, какое количество электронов (или других заряженных частиц) должно переместиться от одного объекта к другому для получения необходимого значения напряжения. Последнее возникает по той причине, что при перемещении частиц между объектами образуется разница потенциалов.

Единицей измерения емкостного значения является фарад (на письме обозначается заглавной кириллической литерой Ф). Когда при перенесении заряда в 1 Кулон напряжение меняется на 1 Вольт, значение емкости между перенесенными объектами составляет 1 Фарад. Формула зависимости емкости от напряжения имеет такой вид:

С (емкость) = Q (заряд)/U(напряжение).

Если мастер собрался измерять емкость используемого в радиоэлектронной схеме конденсатора, ему потребуется такой прибор, как мультиметр. С задачей способен справиться даже бюджетный аппарат, при этом наибольшая точность демонстрируется при работе с пленочными конденсаторными элементами. Для максимально точных замеров можно воспользоваться измерителем иммитанса, но данный прибор отличается очень высокой ценой (около 120 тыс. руб.). При использовании мультиметра нужно придерживаться следующего алгоритма:

  1. Отсоединить электроцепь от источника нагрузки. Проверить отсутствие питания, установив на устройстве режим замера напряжения и поставив щупы к источнику: показатель должен быть равен нулю.
  2. Снять заряд с конденсатора пассивным способом (подождать 20-30 минут) или активным (с помощью резистора). Для маленьких элементов нужен прибор с сопротивлением более 2 кОм. С достаточно крупными конденсаторами (например, в фотоаппаратах и бытовой технике) лучше вообще не работать в домашних условиях без подготовки – они накапливают опасно высокий заряд. Для разрядки такого элемента требуется резистор на 20 кОм и 5 Вт, подсоединенный через изолированный провод диаметром 3,3 мм2, предназначенный для эксплуатации под напряжением до 600 В.
  3. Отключить конденсатор от цепи. После этого поставить мультиметр в режим замера емкости. Если прибор снабжен несколькими настроечными диапазонами, нужно поставить тот, что с наибольшей вероятностью окажется верным (сориентироваться можно по маркировке). При наличии клавиши Rel нужно нажать ее, чтобы емкость сошла со щуповых элементов.
  4. Щупы помещаются к выводам конденсатора. При тестировании поляризованных элементов надо обязательно соблюдать полярность. Теперь нужно дождаться вывода данных на дисплей. Если высветилось слово overload (или OL), показатель слишком высокий для обнаружения данным прибором или в данном диапазоне (во втором случае нужно выбрать другой диапазон).

Важно! Нельзя подключать мультиметр к конденсаторному элементу, на корпусе которого имеются проколы или выпуклые места. Такие элементы вообще не стоит эксплуатировать – при подключении питания они способны взорваться

Процесс измерения емкости конденсатора мультиметром

Объем панели и генератора Van de Graaff

Конденсаторы обычно представляют собой две пластины, накладывающие слой диэлектрических слоев.

Читайте также: Основные преимущества цифровых приборов перед аналоговыми

[Емкость между двумя панелями, Φ

] = [Диэлектрическая проницаемость вакуума, F / m] * [Диэлектрическая диэлектрическая проницаемость между пластинами] * [Поверхность панели, м²м] / [Расстояние между пластинами, м

]

[Диэлектрическая проницаемость вакуума, F / m

] приблизительно равна 8,854E-12, [Расстояние между пластинами, м] намного меньше линейных размеров пластин.

Давайте подумаем о таком интересном случае.

Предположим, у нас есть две панели с определенной разницей потенциалов. Мы начинаем физически проводить их в космосе. Мы используем энергию, потому что панели притягивают друг друга. Напряжение между пластинами будет увеличиваться, потому что заряд остается неизменным, а емкость уменьшается.

Этот принцип основан на работе генератора Ван де Граафа. На конвейерной ленте имеются металлические пластины или зернистые материалы, которые могут нести наполнитель.

Единица измерения емкости

Измерять емкостные показатели принято в фарадах. В России в вычислениях принято сокращать название единицы до заглавной буквы Ф, в международных документах она именуется латинской литерой – F. Названа она по имени английского физика Майкла Фарадея. За значение 1 Ф принимается такая емкость, при которой при транспортировке однокулонного заряда от одной обкладки к другой (или из одной точки в другую) напряжение между ними изменится на величину одного вольта.

Единица измерения электроёмкости в других системах

В систему СИ использование фарада для описания емкости внедрено в 1960 году. В гауссовой системе для этого используется статфарад. Сокращать такую единицу на письме принято как статФ. 1 статФ приблизительно равен 1,11 пикофарада и описывает емкость сферы, имеющей радиус 1 сантиметр и помещенной в вакуумную среду. Перевести значения той или иной величины во внесистемных единицах в принятые в СИ можно с помощью специальных калькуляторов.

Обозначение конденсаторов, изящество, пикофарад, нанофарад, микрофоны

Когда эти зерна приближаются к плоскости заземления, между ними и землей используется относительно высокое напряжение (1000 или более вольт). Они пополняются. Затем ленту удаляют с заземленной пластины. Емкость между ними и землей падает в тысячи или десять тысяч раз, а напряжение увеличивается столько же раз.

Кроме того, эти зерна находятся в контакте с телом, на котором собирается заряд, и ему дается часть его заряда. Таким образом, вы можете получить 10 или даже 100 миллионов вольт.

Единицы измерения кратных Фарад (Фарад)

Эн Фарад — очень большая миска. Теперь появились специальные наноконденсаторы, в которых очень тонкие панели размещены очень тонким, но электрически сильным изолятором, переплетенным в огромные ошибки. Такие конденсаторы также имеют мощности в десятках фарадов.

Электроника обычно работает с гораздо меньшими возможностями.

mikrofaradaмкФMCF1E-6F,000001 F
нФнФнФ1E-9F,001 мкФ
pikofarataпФпФ1E-12F,001 нФ

(подробнее …) :: (в начале статьи)

Индекс :: SearchTechnical Safety :: Справка

К сожалению, члены регулярно сталкиваются с ошибками, ремонтируют, дополняют, развивают, готовят новые.

Подпишитесь на новости, о которых вы знаете.

Если что-то неясно, обязательно спросите! Задайте вопрос. Обсуждение статьи.[3].

Сколько Фараду нужен конденсатор для поддержания электричества в 2 киловатт в течение 10 часов. Читайте ответ …

Другие статьи

Источники питания без трансформаторов, преобразователи напряжения без … Обзор цепей питания без трансформаторов …

Усилитель мощности большой мощности D (D).

Звук. UMLC. УНЧ. C … Великий класс мощности UMZCH D. Основной способ ….

Практика проектирования электронных схем. Электроника для самостоятельного обучения …. Искусство разработки устройств. Элементная база радиоэлектроники. Типичные схемы ….

Вибрационный контур. Схема. Расчет. Применение. Резонанс. Резонансный … Расчет и использование схем колебаний. Феноменный резонанс. Последовательный …

Светодиодный диод LED, свет … Принципиальная схема импульсного источника питания ярких светодиодов ….

Легкая музыка, легкая музыка своими руками.

Схемы, строительство … Как нарисовать легкую музыку. Оригинальный дизайн системы освещения и музыки …

Операционный усилитель, операционный усилитель, операционная система. Применение, схемы типов …. Схемы работы усилителя.

Использование op-amp …

Проверка резисторов, конденсаторов, диодов, мостовых мостов. O … Как проверить резистор, конденсатор, диоды, мост. Процедура испытания ….

Добавить комментарий