Новости
403 0

Анцапфа трансформатора — это.. Определение, схема и устройство, принцип работы, регулировка

Проблема состоит в том, что напряжение в электрической сети меняется в зависимости от ее нагруженности, в то время как для адекватной работы большинства потребителей электроэнергии необходимым условием является нахождение питающего напряжения в определенном диапазоне, чтобы оно не было бы выше или ниже определенных приемлемых границ.

Поэтому и нужны какие-то способы подстройки, регулирования, корректировки сетевого напряжения. Один из лучших способов — это изменение по мере надобности коэффициента трансформации путем уменьшения или увеличения числа витков в первичной или во вторичной обмотке трансформатора, в соответствии с известной формулой: U1/U2 = N1/N2.

Для регулировки напряжения на вторичных обмотках трансформаторов, с целью поддержания у потребителей правильной величины напряжения, — у некоторых трансформаторов предусмотрена возможность изменять соотношение витков, то есть корректировать таким образом в ту или иную сторону коэффициент трансформации.

Подавляющее большинство современных силовых трансформаторов оснащено специальными устройствами, позволяющими выполнять регулировку коэффициента трансформации, то есть добавлять или убавлять витки в обмотках.

Что такое анцапфа: определение и назначение

Анцапфа трансформатора – это переключатель ПБВ, располагающийся на стороне высшего напряжения. Предназначается для корректировки коэффициента трансформации. В простом понимании процесс предполагает изменение числа витков в обмотке, что по физическим законам корректирует величину напряжения.

Читайте также: Про смартфон — цены, обзоры и реальные отзывы покупателей

Подобный элемент позволяет изменять уровень напряжения на +/- 10%. Уровень зависит от мощности силового оборудования, его технических особенностей. Регулировка анцапфы трансформатора 10/0,4 кв осуществляется только при выведенном в ремонт оборудовании (переключение без возбуждения).

Выполнять корректировку в любое удобное время не представляется возможным, так как осуществление операции требует обесточивания абонентов. Именно поэтому на мощных трансформаторах силовых подстанций от 110 кВ и выше используется другое устройство, именуемое РПН.

Регулировка напряжения под нагрузкой считается усовершенствованной анцапфой, которая позволяет изменять количество витков без отключения. Для комфорта соблюдения режимов диспетчерским персоналом, РПН дополняется телемеханикой.

Методы очистки

От чистоты трансформаторного масла зависит исправность работы изоляционной системы. Но в процессе эксплуатации рабочая жидкость стареет, загрязняется с накоплением продуктов распада, окислением посторонних примесей (кислород, вода, окислы металлов, спирты, альдегиды).

Отходы при оседании на изоляции:

  • сгущают масло;
  • снижают охлаждающую способность и вязкость.

Справка! Чистое изоляционное масло обеспечивает электрическую прочность системы до 80%, предотвращает окисление в ходе работе двигателя даже под действием высоких температур, не допускает серьезные поломки в системе изоляции.

Для очищения от загрязнений используются химические, физические, физико-химические способами (кислотная и ионообменная очистка, коагуляция, адсорбция, гравитация, фильтрация).

Центрифугирование

На центрифуге проводится предварительная очистка жидкости в случае выявления низкой электрической плотности ниже20 кВ. Масло очищается от механических примесей путем осушки с помощью вакуумных сепараторов с подачей температуры +50+60 градусов.

Фильтрование

Метод заключается в пропуске масло через фильтр-пресс производительностью до 3000 л/ час. Для фильтрации применимы:

  • пористые фильтрующие материалы для отделения взвешенных твердых частиц от масла;
  • фильтр-прессы типа ФП-2-3000, ФП-4-4;
  • мобильные установки фильтрации для передвижного оборудования.

Способ – простой, надежный. Хотя желательно сочетать 2-3 метода для восстановления и регенерации свойств загрязненного масла полностью.

Адсорбционная обработка

В рабочую жидкость добавляются адсорбенты, удерживающие вредные примеси на поверхности масла:

  • окиси алюминия;
  • отбеливающая глина.

Вакуумная обработка

С помощью установки вакуума и отсасывания кислорода извлекаются:

Читайте также: Генераторы функциональных сигналов для тестирования устройств: недорогие модели с Aliexpress
  • вредные примеси;
  • газовые пузырьки;
  • растворенные газы.

Справка! Трансформаторное масло при отсутствии кислорода долго не портится.

Устройство анцапфы

Анцапфа трансформатора – это простое устройство в виде виткового соединения, которое сопряжено с переключателем и обмоткой по высокой стороне. Корректировка выполняется в два направления: на повышение (убавление) и на понижение (добавление). Все это характеризуется физическим законом Ом, которое предполагает пропорциональное соотношение сопротивления к уровню напряжения.

Чтобы понять, в каком положении анцапфа трансформатора, необходимо посмотреть на условные обозначения шильды. Каждый шаг предполагает изменение на 2,5% в сторону уменьшения или увеличения. Для поддержания стабильности сопротивления контактов используется пружинное приспособление.

Заметим, что с течением времени сопротивление изоляции может снижаться, поэтому перевод устройства необходимо выполнять не менее 2 раз в год. Раз в год следует осуществлять физические измерения обмоток с использованием мегомметра или других приспособлений службы изоляции.

Устройство РПН: принцип работы

Как отмечалось выше, регулировка анцапфы трансформатора может выполнять через РПН. Особый тип переключений предполагает постоянную корректировку напряжения в зависимости от времени суток и нагрузки. Регулирование осуществляется в пределах от +/- 10 до 16%. В некоторых случаях устанавливается полностью автоматических механизм, который поддерживает нужный режим работ самостоятельно. Прочие варианты зависят от оперативного управления из диспетчерского пункта или ОПУ.

Что касается принципа работы, то он выполнен следующим образом:

  1. Имеется анцапфа, которая путем выкручивания пружины меняет число обмоток. При обычных условиях 33 оборота предполагает изменение количества витков на 1 единицу. Мера регулирования во многом определяется отстройкой шага.
  2. Для автоматизации процесса подключается механический мотор, который отстроен для выполнения ровно одной операции. Из ОПУ подается сигнал на электродвигатель, после чего происходит регулирование.
  3. Для более быстрого реагирования необходимо задействовать телемеханику, которая обеспечивает процесс из диспетчерского пункта.

Когда нужно проверять

Периодичность проведения испытаний зависит от мощностных характеристик агрегатов, в которых применяется данный материал.Обычно пробы отбираются один раз в 4 месяца или перед пуском в работу нового оборудования.

Достоверность получаемых результатов зависит от условий, при которых производится проверка. Необходимо исключить проникновение влаги из воздушной среды в материал. Ёмкость с маслом открывают при выравнивании температуры состава с данными показателями воздушной среды.

При проведении проверки после запуска тестирование выполняется 5 раз в течение начальных 30 дней эксплуатации оборудования.

Колба предварительно должна быть очищена от загрязнений. Для большей достоверности и исключения неправильных результатов жидкость отбирается со дна ёмкости оборудования.

Виды РПН

Читайте также: Как проверить УЗО на срабатывание: безопасность дома, методы проверки в домашних условиях, необходимые инструменты и подручные материалы

Существует несколько видов регулировки под напряжением, среди которых выделяется:

  1. РПН с токоограничительными реакторами. Это анцапфа трансформатора старого образца, которая предполагает наличие двух контакторов и реактора. При проведении операции два контакта замыкаются накоротко до перехода на другое положение. Для ограничения негативного воздействия используется реактор.
  2. РПН с ограничительными резисторами. Применяется на новых трансформаторных подстанциях. В методе задействован триггерный контактор, что предполагает изменение количества витков через пружину. Это сокращает время трансформирования уровня напряжения и негативный эффект для оборудования.

Способы регулирования напряжения трансформатора под нагрузкой

Регулирование напряжения трансформаторов способом РПН производится в принципе так же, как и способом ПБВ, но число ответвлений обмотки, т. е. число регулировочных ступеней, обычно бывает больше, а диапазон регулирования — шире. Так, ГОСТ 12022—76 для трансформаторов мощностью 63—630 кВА установил диапазон регулирования напряжения относительно номинального ±10% ступенями по 1,67% (±6X1,67%). ГОСТ 11920—73 разрешил для трансформаторов мощностью 1000—80000 кВА иметь различные диапазоны регулирования: ±9, ±10, ±12%. Существуют серии трансформаторов с еще большим диапазоном: ±16, ±22, ±36. Еще более «глубокое» регулирование требуется для некоторых специальных трансформаторов, например электропечных, где отношение пределов регулирования напряжения обмотки НН нередко составляет 1 : 2, 1 : 3 и даже 1 : 5.

Рассмотрим наиболее распространенную схему работы переключающего устройства с токоограничивающим реактором (рисунок 2). Переключающее устройство имеет следующие основные части: избиратель ответвлений, контактор, токоограничивающий реактор, привод устройства. В схеме имеется два отводящих (токосъемных) контакта избирателя П1 и П2, два контактора К1 и К2, токоограничивающий реактор Р (Iн — номинальный ток трансформатора).

Рис 2. Схемы работы переключающего устройства с токоограничивающим реактором

  • а — положение «два вместе»;
  • б — разомкнут контакт ФК2;
  • в — положение «мост»;
  • г — разомкнут контакт К1

На рисунке 2, а оба отводящих контакта установлены на одном ответвлении обмотки. Такое положение контактов называют «два вместе». Номинальный ток нагрузки делится поровну между двумя половинами переключающего устройства. При необходимости перейти на другое ответвление (ступень) обмотки привод в первую очередь размыкает контакты контактора К2 (рисунок 2, б). Эти контакты разрывают ток, равный половине номинального, и между ними возникает электрическая дуга. После гашения дуги весь ток проходит только через вторую (верхнюю) половину переключающего устройства. Отводящий контакт избирателя (П2) при отсутствии тока (цепь разорвана) переходит на другое ответвление обмотки, после чего контакты К2 вновь замыкаются (рисунок 2, в).

Такое положение переключающего устройства обычно называют положением «мост». Как и в положении «два вместе», номинальный ток нагрузки делится пополам между каждой половиной переключающего устройства. Однако в положении «мост» кроме нагрузочного тока возникает циркулирующий ток, замыкающийся внутри контура, образованного частью обмотки трансформатора и реактором (рисунок 2, в). Величина циркулирующего тока ограничивается сопротивлением контура — в основном сопротивлением реактора. Обычно сопротивление реактора подбирают так, чтобы величина циркулирующего тока была равна половине номинального. В этом случае ток, проходящий через отводящие контакты П1 и П2, не будет больше номинального и нет опасности их чрезмерного нагрева.

Далее размыкаются контакты К1, разрывающие номинальный ток (рисунок 2, г). После гашения дуги весь ток проходит уже через другую половину переключающего устройства. Отводящий контакт П1 избирателя при отсутствии тока переходит на ответвление, где уже стоит контакт П2, контакт К2 вновь замыкается и переключение заканчивается.

Из рассмотрения работы переключающего устройства РПН можно сделать следующие выводы:

  • контакты контактора К1 и К2 замыкают и размыкают ток, т.е. подвергаются воздействию электрической дуги;
  • контакты избирателя П1 и П2 замыкаются и размыкаются без разрыва тока, т. е. при отсутствии дуги;
  • привод должен обеспечить описанную последовательность работы контактов;
  • реактор служит для ограничения циркулирующего тока до необходимой величины (например, до половины номинального тока нагрузки);
  • в положениях контактов избирателя «два вместе» и «мост» ток нагрузки распределяется поровну между двумя обмотками реактора, установленными на одном сердечнике. Эти токи направлены навстречу друг другу и в положение «два вместе» не создают возбуждающего поля в сердечнике и падения напряжения.

Достоинство переключающих устройств с токоограничивающий реактором заключается в возможности длительно работать в промежуточном положении «мост», поэтому для привода этих устройств не требуется специальных быстродействующих механизмов, значит, они могут быть относительно простыми и дешевыми.

В последние годы широкое распространение получили и другие переключающие устройства — с активными токоограничивающими сопротивлениями. Не рассматривая подробно эти устройства, отметим, что их конструкция получается более сложной и дорогой, чем у переключающих устройств с реакторами. Однако они обладают рядом весьма существенных достоинств: громоздкий и тяжелый реактор заменен сравнительно легкими активными сопротивлениями; конструктивно эти устройства более компактны; условия гашения дуги более благоприятны.

Существует много схем регулируемых обмоток трансформаторов. На рисунке 3 показана в качестве примера схема обмотки ВН однофазного трансформатора, регулируемой переключающим устройством с реактором.

Рисунок 3 — Схема обмотки ВН однофазного трансформатора, регулируемой переключающим устройством с реактором

РПН и телемеханика: автоматизация корректировки напряжения

Переключение анцапфы трансформатора крайне важная процедура, особенно для подстанций от 110 кВ и выше. Как отмечалось ранее, процесс предполагает задействование РПН, переключение которого можно вывести на пульт диспетчера. Для этого используется телемеханика, которая по оптоволоконному кабелю способная отправить сигнал на повышение или понижение уровня напряжения.

Общая схема предполагает следующие элементы в цепочке:

  1. Наличие серверной, которая отправляет и получает сигнал на подстанцию, а также компьютера в диспетчерской. Передача информации предполагает применение проводника, где чаще всего используется оптоволокно. Здесь также распространены случаи витой пары, но скорость передачи информации значительно уступает.
  2. На подстанции в шкафу телемеханики происходит подключение кабеля в блок, который взаимодействует с РПН. На выходе появляется два вида команд повышение/понижение. После проведения операции отдается ответ на сервер, что проявляется в исполнении или неисполнении задачи.
  3. Чтобы определить уровень напряжения, на компьютер выводятся телеизмерения. При регулировке последние должны изменяться вверх или вниз в зависимости от посланного сигнала.

Автоматика и телемеханика обеспечивают существенный комфорт в ведении режимных указаний. Выстраивание системы во многом зависит от используемых технологий и технических средств. Следует отметить, что выстраивание автоматизированной системы работы – следующий шаг комфортного регулирования режима согласно графику.

Добавить комментарий